ترغب بنشر مسار تعليمي؟ اضغط هنا

The X-ray Luminosity Functions of Field Low Mass X-ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

128   0   0.0 ( 0 )
 نشر من قبل Bret Lehmer
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the young early-type galaxy NGC 3384 (~2-5 Gyr) has an excess of luminous field LMXBs (L_X > (5-10) x 10^37 erg/s) per unit K-band luminosity (L_K; a proxy for stellar mass) than the old early-type galaxies NGC 3115 and 3379 (~8-10 Gyr), which results in a factor of ~2-3 excess of LX/LK for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.



قيم البحث

اقرأ أيضاً

129 - M.Revnivtsev 2010
We analyze a flux-limited sample of persistent and bright (with 2-10 keV fluxes exceeding 1.4e-10 erg/s/cm2) low-mass X-ray binaries (LMXBs) in our Galaxy. It is demonstrated that the majority of binary systems with X-ray luminosities below logL(erg/ sec)~37.3 have unevolved secondary companions (except for those with white dwarf donors), while systems with higher X-ray luminosity predominantly harbor giant donors. Mass transfer in binary systems with giants significantly shortens their life time thus steepening the X-ray luminosity function of LMXBs at high luminosity. We argue that this is the reason why the LMXB luminosity function constructed in the last years from observations of sources in our and distant galaxies demonstrates a break at logL(erg/sec)~37.3.
As the Chandra X-ray Observatory mission matures, increasing numbers of nearby galaxies are being observed multiple times, sampling the variability of extragalactic X-ray binaries on timescales extending from seconds to years. We present results on l uminous low-mass X-ray binaries from several early-type galaxies. We show that instantaneous LMXB luminosity functions of early-type galaxies do not significantly change between observations; a relatively low fraction of sources are strongly variable on <~ 5 yr timescales. We discuss the implications that a relatively small number of transient LMXBs are being discovered in early-type galaxies.
We present the X-ray luminosity function (XLF) of low mass X-ray binaries (LMXBs) in the globular clusters (GCs) and fields of seven early-types galaxies. These galaxies are selected to have both deep Chandra observations, which allow their LMXB popu lations to be observed to X-ray luminosities of $10^{37}-10^{38}$ erg/s, and HST optical mosaics which enable the X-ray sources to be separated into field LMXBs, GC LMXBs, and contaminating background and foreground sources. We find that at all luminosities the number of field LMXBs per stellar mass is similar in these galaxies. This suggests that the field LMXB populations in these galaxies are not effected by the GC specific frequency, and that properties such as binary fraction and the stellar initial mass function are either similar across the sample, or change in a way that does not effect the number of LMXBs. We compare the XLF of the field LMXBs to that of the GC LMXBs and find that they are significantly different with a p-value of $3times10^{-6}$ (equivalent to 4.7$sigma$ for a normal distribution). The difference is such that the XLF of the GC LMXBs is flatter than that of the field LMXBs, with the GCs hosting relatively more bright sources and fewer faint sources. A comparison of the XLF of the metal-rich and metal-poor GCs hints that the metal-poor GCs may have more bright LMXBs, but the difference is not statistically significant.
We have carried out radiation-hydrodynamic simulations of thermally-driven accretion disc winds in low-mass X-ray binaries. Our main goal is to study the luminosity dependence of these outflows and compare with observations. The simulations span the range $rm{0.04 leq L_{acc}/L_{Edd} leq 1.0}$ and therefore cover most of the parameter space in which disc winds have been observed. Using a detailed Monte Carlo treatment of ionization and radiative transfer, we confirm two key results found in earlier simulations that were carried out in the optically thin limit: (i) the wind velocity -- and hence the maximum blueshift seen in wind-formed absorption lines -- increases with luminosity; (ii) the large-scale wind geometry is quasi-spherical, but observable absorption features are preferentially produced along high-column equatorial sightlines. In addition, we find that (iii) the wind efficiency always remains approximately constant at $rm{dot{M}_{wind}/dot{M}_{acc} simeq 2}$, a behaviour that is consistent with observations. We also present synthetic Fe XXV and Fe XXVI absorption line profiles for our simulated disc winds in order to illustrate the observational implications of our results.
We investigate X-ray binary (XRB) luminosity function (XLF) scaling relations for Chandra detected populations of low-mass XRBs (LMXBs) within the footprints of 24 early-type galaxies. Our sample includes Chandra and HST observed galaxies at D < 25 M pc that have estimates of the globular cluster (GC) specific frequency (SN) reported in the literature. As such, we are able to directly classify X-ray-detected sources as being either coincident with unrelated background/foreground objects, GCs, or sources that are within the fields of the galaxy targets. We model the GC and field LMXB population XLFs for all galaxies separately, and then construct global models characterizing how the LMXB XLFs vary with galaxy stellar mass and SN. We find that our field LMXB XLF models require a component that scales with SN, and has a shape consistent with that found for the GC LMXB XLF. We take this to indicate that GCs are seeding the galactic field LMXB population, through the ejection of GC-LMXBs and/or the diffusion of the GCs in the galactic fields themselves. However, we also find that an important LMXB XLF component is required for all galaxies that scales with stellar mass, implying that a substantial population of LMXBs are formed in situ, which dominates the LMXB population emission for galaxies with SN < 2. For the first time, we provide a framework quantifying how directly-associated GC LMXBs, GC-seeded LMXBs, and in-situ LMXBs contribute to LMXB XLFs in the broader early-type galaxy population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا