ترغب بنشر مسار تعليمي؟ اضغط هنا

The radio-loud AGN population at z>~1 in the COSMOS field. I. Selection and Spectral Energy Distributions

125   0   0.0 ( 0 )
 نشر من قبل Ranieri Diego Baldi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ranieri D. Baldi




اسأل ChatGPT حول البحث

We select a sample of radio galaxies at high redshifts (z>~1) in the COSMOS field, by cross-matching optical/infrared images with the FIRST radio data. The aim of this study is to explore the high-z radio-loud (RL) AGN population at much lower luminosities than the classical samples of distant radio sources and similar to those of the local population of radio galaxies. The wide multiwavelength coverage provided by the COSMOS survey allows us to derive their Spectral Energy Distributions (SEDs). The SED modeling with stellar and dust components (with our code 2SPD) returns several important quantities associated with the AGN and host properties. The final sample consists of 74 RL AGN, which extends the sample previously selected by Chiaberge et al. (2009) and studied by Baldi et al. (2013). The resulting photometric redshifts range from z~0.7 to 3. The sample mostly includes compact radio sources, but also 21 FRIIs; the radio power distribution of the sample at 1.4 GHz covers ~10^(31.5)-10^(34.3) ergsHz. The stellar mass of the hosts ranges ~10^(10)-10^(11.5) M_{sun}. The SEDs are dominated by the contribution from an old stellar population for most of the sources. UV and mid-IR (MIR) excesses are observed for half of the sample. The dust luminosities are in the range L_(dust) ~10^(43)-10^(45.5) erg/s (T ~350-1200 K). UV luminosities at 2000 A ranges ~10^(41.5)-10^(45.5) erg/s. UV emission is significantly correlated with both IR and radio luminosities, the former being the stronger link. However, the origin of UV and dust emission, whether it is produced by the AGN of by star formation, is still unclear. Our results show that this RL AGN population at high redshifts displays a wide variety of properties from possible quasars at the highest luminosities, to low-luminosity old galaxies, similarly to the local FRI-FRII dichotomy.



قيم البحث

اقرأ أيضاً

541 - M. Elvis , H. Hao , F. Civano 2012
The Cosmic Evolution Survey (COSMOS) enables the study of the Spectral Energy Distributions (SEDs) of Active Galactic Nuclei (AGN) because of the deep coverage and rich sampling of frequencies from X-ray to radio. Here we present a SED catalog of 413 X-ray (xmm) selected type 1 (emission line FWHM$>2000$ km s$^{-1}$) AGN with Magellan, SDSS or VLT spectrum. The SEDs are corrected for the Galactic extinction, for broad emission line contributions, constrained variability, and for host galaxy contribution. We present the mean SED and the dispersion SEDs after the above corrections in the rest frame 1.4 GHz to 40 keV, and show examples of the variety of SEDs encountered. In the near-infrared to optical (rest frame $sim 8mu m$-- 4000AA), the photometry is complete for the whole sample and the mean SED is derived from detections only. Reddening and host galaxy contamination could account for a large fraction of the observed SED variety. The SEDs are all available on-line.
The mid-infrared to ultraviolet (0.1 -- 10 $mu m$) spectral energy distribution (SED) shapes of 407 X-ray-selected radio-quiet type 1 AGN in the wide-field ``Cosmic Evolution Survey (COSMOS) have been studied for signs of evolution. For a sub-sample of 200 radio-quiet quasars with black hole mass estimates and host galaxy corrections, we studied their mean SEDs as a function of a broad range of redshift, bolometric luminosity, black hole mass and Eddington ratio, and compared them with the Elvis et al. (1994, E94) type 1 AGN mean SED. We found that the mean SEDs in each bin are closely similar to each other, showing no statistical significant evidence of dependence on any of the analyzed parameters. We also measured the SED dispersion as a function of these four parameters, and found no significant dependencies. The dispersion of the XMM-COSMOS SEDs is generally larger than E94 SED dispersion in the ultraviolet, which might be due to the broader ``window function for COSMOS quasars, and their X-ray based selection.
We study the Spectral Energy Distributions, SEDs, (from FUV to MIR bands) of the first sizeable sample of 34 low-luminosity radio galaxies at high redshifts, selected in the COSMOS field. To model the SEDs we use two different template-fitting techni ques: i) the Hyperz code that only considers single stellar templates and ii) our own developed technique 2SPD that also includes the contribution from a young stellar population and dust emission. The resulting photometric redshifts range from z ~0.7 to 3 and are in substantial agreement with measurements from earlier work, but significantly more accurate. The SED of most objects is consistent with a dominant contribution from an old stellar population with an age ~1 - 3 10^{9} years. The inferred total stellar mass range is ~10^{10} - 10^{12} M(sun). Dust emission is needed to account for the 24micron emission in 15 objects. Estimates of the dust luminosity yield values in the range L_{dust} ~10^{43.5} -10^{45.5} erg s^{-1}. The global dust temperature, crudely estimated for the sources with a MIR excess, is ~ 300-850 K. A UV excess is often observed with a luminosity in the range ~ 10^{42}-10^{44} erg s^{-1} at 2000 A rest frame. Our results show that the hosts of these high-z low-luminosity radio sources are old massive galaxies, similarly to the local FRIs. However, the UV and MIR excesses indicate the possible significant contribution from star formation and/or nuclear activity in such bands, not seen in low-z FRIs. Our sources display a wide variety of properties: from possible quasars at the highest luminosities, to low-luminosity old galaxies.
Only a small fraction of observed Active Galactic Nuclei display large-scale radio emission associated with jets, yet these radio-loud AGN have become increasingly important in models of galaxy evolution. In determining the dynamics and energetics of the radio sources over cosmic time, a key question concerns what happens when their jets switch off. The resulting `remnant radio-loud AGN have been surprisingly evasive in past radio surveys, and therefore statistical information on the population of radio-loud AGN in their dying phase is limited. In this paper, with the recent developments of LOFAR and the VLA, we are able to provide a systematically selected sample of remnant radio-loud AGN in the Herschel-ATLAS field. Using a simple core-detection method, we constrain the upper limit on the fraction of remnants in our radio-loud AGN sample to 9 per cent, implying that the extended lobe emission fades rapidly once the core/jets turn off. We also find that our remnant sample has a wide range of spectral indices ($-1.5leqslant alpha^{1400}_{150}leqslant -0.5$), confirming that the lobes of some remnants may possess flat spectra at low frequencies just as active sources do. We suggest that, even with the unprecedented sensitivity of LOFAR, our sample may still only contain the youngest of the remnant population.
Combining the catalogue of galaxy morphologies in the COSMOS field and the sample of H$alpha$ emitters at redshifts $z=0.4$ and $z=0.84$ of the HiZELS survey, we selected $sim$ 220 star-forming bulgeless systems (Sersic index $n leq 1.5$) at both epo chs. We present their star formation properties and we investigate their contribution to the star formation rate function (SFRF) and global star formation rate density (SFRD) at $z < 1$. For comparison, we also analyse H$alpha$ emitters with more structurally evolved morphologies that we split into two classes according to their Sersic index $n$: intermediate ($ 1.5 < n leq 3 $) and bulge-dominated ($n > 3$). At both redshifts the SFRF is dominated by the contribution of bulgeless galaxies and we show that they account for more than 60% of the cosmic SFRD at $z < 1$. The decrease of the SFRD with redshift is common to the three morphological types but it is stronger for bulge-dominated systems. Star-forming bulgeless systems are mostly located in regions of low to intermediate galaxy densities ($Sigma sim 1 - 4$ Mpc$^{-2}$) typical of field-like and filament-like environments and their specific star formation rates (sSFRs) do not appear to vary strongly with local galaxy density. Only few bulgeless galaxies in our sample have high (sSFR $>$ 10$^{-9}$ yr$^{-1}$) and these are mainly low-mass systems. Above $M_* sim 10^{10}$ M$_{odot}$ bulgeless are evolving at a normal rate (10$^{-9}$ yr$^{-1} <$ sSFR $<$10$^{-10}$ yr$^{-1}$) and in the absence of an external trigger (i.e. mergers/strong interactions) they might not be able to develop a central classical bulge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا