ترغب بنشر مسار تعليمي؟ اضغط هنا

Chameleon fields and solar physics

166   0   0.0 ( 0 )
 نشر من قبل Barbara Ricci
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we discuss some aspects of solar physics from the standpoint of the so-called chameleon fields (i.e. quantum fields, typically scalar, where the mass is an increasing function of the matter density of the environment). Firstly, we analyze the effects of a chameleon-induced deviation from standard gravity just below the surface of the Sun. In particular, we develop solar models which take into account the presence of the chameleon and we show that they are inconsistent with the helioseismic data. This inconsistency presents itself not only with the typical chameleon set-up discussed in the literature (where the mass scale of the potential is fine-tuned to the meV), but also if we remove the fine-tuning on the scale of the potential. Secondly, we point out that, in a model recently considered in the literature (we call this model Modified Fujiis Model), a conceivable interpretation of the solar oscillations is given by quantum vacuum fluctuations of a chameleon.



قيم البحث

اقرأ أيضاً

We present phase shift measurements for neutron matter waves in vacuum and in low pressure Helium using a method originally developed for neutron scattering length measurements in neutron interferometry. We search for phase shifts associated with a c oupling to scalar fields. We set stringent limits for a scalar chameleon field, a prominent quintessence dark energy candidate. We find that the coupling constant $beta$ is less than 1.9 $times10^7$~for $n=1$ at 95% confidence level, where $n$ is an input parameter of the self--interaction of the chameleon field $varphi$ inversely proportional to $varphi^n$.
Borexino is a large-volume liquid scintillator detector installed in the underground halls of the Laboratori Nazionali del Gran Sasso in Italy. After several years of construction, data taking started in May 2007. The Borexino phase I ended after abo ut three years of data taking. Borexino provided the first real time measurement of the $^{7}$Be solar neutrino interaction rate with accuracy better than 5% and confirmed the absence of its day-night asymmetry with 1.4% precision. This latter Borexino results alone rejects the LOW region of solar neutrino oscillation parameters at more than 8.5 $sigma$ C.L. Combined with the other solar neutrino data, Borexino measurements isolate the MSW-LMA solution of neutrino oscillations without assuming CPT invariance in the neutrino sector. Borexino has also directly observed solar neutrinos in the 1.0-1.5 MeV energy range, leading to the first direct evidence of the $pep$ solar neutrino signal and the strongest constraint of the CNO solar neutrino flux up to date. Borexino provided the measurement of the solar $^{8}$B neutrino rate with 3 MeV energy threshold.
We have calculated the chameleon pressure between two parallel plates in the presence of an intervening medium that affects the mass of the chameleon field. As intuitively expected, the gas in the gap weakens the chameleon interaction mechanism with a screening effect that increases with the plate separation and with the density of the intervening medium. This phenomenon might open up new directions in the search of chameleon particles with future long range Casimir force experiments.
We propose an afterglow phenomenon as a unique trace of chameleon fields in optical experiments. The vacuum interaction of a laser pulse with a magnetic field can lead to a production and subsequent trapping of chameleons in the vacuum chamber, owing to their mass dependence on the ambient matter density. Magnetically induced re-conversion of the trapped chameleons into photons creates an afterglow over macroscopic timescales that can conveniently be searched for by current optical experiments. We show that the chameleon parameter range accessible to available laboratory technology is comparable to scales familiar from astrophysical stellar energy loss arguments. We analyze quantitatively the afterglow properties for various experimental scenarios and discuss the role of potential background and systematic effects. We conclude that afterglow searches represent an ideal tool to aim at the production and detection of cosmologically relevant scalar fields in the laboratory.
Over the past three decades, we have witnessed one of the great revolutions in our understanding of the cosmos - the dawn of the Exoplanet Era. Where once we knew of just one planetary system (the Solar system), we now know of thousands, with new sys tems being announced on a weekly basis. Of the thousands of planetary systems we have found to date, however, there is only one that we can study up-close and personal - the Solar system. In this review, we describe our current understanding of the Solar system for the exoplanetary science community - with a focus on the processes thought to have shaped the system we see today. In section one, we introduce the Solar system as a single well studied example of the many planetary systems now observed. In section two, we describe the Solar systems small body populations as we know them today - from the two hundred and five known planetary satellites to the various populations of small bodies that serve as a reminder of the systems formation and early evolution. In section three, we consider our current knowledge of the Solar systems planets, as physical bodies. In section four, we discuss the research that has been carried out into the Solar systems formation and evolution, with a focus on the information gleaned as a result of detailed studies of the systems small body populations. In section five, we discuss our current knowledge of planetary systems beyond our own - both in terms of the planets they host, and in terms of the debris that we observe orbiting their host stars. As we learn ever more about the diversity and ubiquity of other planetary systems, our Solar system will remain the key touchstone that facilitates our understanding and modelling of those newly found systems, and we finish section five with a discussion of the future surveys that will further expand that knowledge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا