ترغب بنشر مسار تعليمي؟ اضغط هنا

Current Noise in Single-Molecule Junctions Induced by Electronic-Vibrational Coupling

138   0   0.0 ( 0 )
 نشر من قبل Christian Schinabeck
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The influence of multiple vibrational modes on current fluctuations in electron transport through single-molecule junctions is investigated. Our analysis is based on a generic model of a molecular junction, which comprises a single electronic state on the molecular bridge coupled to multiple vibrational modes and fermionic leads, and employs a master equation approach. The results reveal that in molecular junctions with multiple vibrational modes already weak to moderate electronic-vibrational coupling may result in high noise levels, especially at the onset of resonant transport, in accordance with experimental findings of Secker et al..[1] The underlying mechanisms are analyzed in some detail. [1] D. Secker et al., Phys. Rev. Lett. 106, 136807 (2011).



قيم البحث

اقرأ أيضاً

We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normalmetallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.
Single-molecule junctions are found to show anomalous spikes in dI/dV spectra. The position in energy of the spikes are related to local vibration mode energies. A model of vibrationally induced two-level systems reproduces the data very well. This m echanism is expected to be quite general for single-molecule junctions. It acts as an intrinsic amplification mechanism for local vibration mode features and may be exploited as a new spectroscopic tool.
The energy and charge fluxes carried by electrons in a two-terminal junction subjected to a random telegraph noise, produced by a single electronic defect, are analyzed. The telegraph processes are imitated by the action of a stochastic electric fiel d that acts on the electrons in the junction. Upon averaging over all random events of the telegraph process, it is found that this electric field supplies, on the average, energy to the electronic reservoirs, which is distributed unequally between them: the stronger is the coupling of the reservoir with the junction, the more energy it gains. Thus the noisy environment can lead to a temperature gradient across an un-biased junction.
We theoretically investigate quantum transport through single-molecule magnet (SMM) junctions with ferromagnetic and normal-metal leads in the sequential regime. The current obtained by means of the rate-equation gives rise to the tunneling anisotrop ic magnetoresistance (TAMR), which varies with the angle between the magnetization direction of ferromagnetic lead and the easy axis of SMM. The angular dependence of TAMR can serve as a probe to determine experimentally the easy axis of SMM. Moreover, it is demonstrated that both the magnitude and sign of TAMR are tunable by the bias voltage, suggesting a promising TAMR based spintronic molecule-device.
In the present work we theoretically study the length dependence of thermopower of a single-molecule junction with a chain-like molecular bridge of an arbitrary length using a tight-binding model. We analyze conditions bringing a nonlinear growth of the thermopower accompanying the extension of the bridge length. Also, we show that the thermopower may decrease with increasing molecular length provided that the molecular bridge is sufficiently long.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا