ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamics of Conformal Anomaly Corrected Black Holes in AdS Space

204   0   0.0 ( 0 )
 نشر من قبل Rong-Gen Cai
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rong-Gen Cai




اسأل ChatGPT حول البحث

We present exact analytical black hole solutions with conformal anomaly in AdS space and discuss the thermodynamical properties of these black hole solutions. These black holes can have a positive, zero and negative constant curvature horizon, respectively. For the black hole with a positive constant curvature horizon, there exists a minimal horizon determined by the coefficient of the trace anomaly, the black hole with a smaller horizon is thermodynamically unstable, while it is stable for the case with a larger horizon. The Hawking-Page transition happens in this case. For the black hole with a Ricci flat horizon, the black hole is always thermodynamically stable and there is no Hawking-Page transition. In the case of the black hole with a negative constant curvature horizon, there exists a critical value for the coefficient of the trace anomaly, under this critical value, the black hole is always thermodynamical stable and the Hawking-Page transition does not happen. When the coefficient is beyond the critical value, the black hole with a smaller horizon is thermodynamically unstable, but it becomes stable for the case with a larger horizon, the Hawking-Page transition always happens in this case. The latter is a new feature for the black holes with a negative constant curvature horizon.



قيم البحث

اقرأ أيضاً

We present a class of exact analytic and static, spherically symmetric black hole solutions in the semi-classical Einstein equations with Weyl anomaly. The solutions have two branches, one is asymptotically flat and the other asymptotically de Sitter . We study thermodynamic properties of the black hole solutions and find that there exists a logarithmic correction to the well-known Bekenstein-Hawking area entropy. The logarithmic term might come from non-local terms in the effective action of gravity theories. The appearance of the logarithmic term in the gravity side is quite important in the sense that with this term one is able to compare black hole entropy up to the subleading order, in the gravity side and in the microscopic statistical interpretation side.
We present a class of charged black hole solutions in an ($n+2)$-dimensional massive gravity with a negative cosmological constant, and study thermodynamics and phase structure of the black hole solutions both in grand canonical ensemble and canonica l ensemble. The black hole horizon can have a positive, zero or negative constant curvature characterized by constant $k$. By using Hamiltonian approach, we obtain conserved charges of the solutions and find black hole entropy still obeys the area formula and the gravitational field equation at the black hole horizon can be cast into the first law form of black hole thermodynamics. In grand canonical ensemble, we find that thermodynamics and phase structure depends on the combination $k -mu^2/4 +c_2 m^2$ in the four dimensional case, where $mu$ is the chemical potential and $c_2m^2$ is the coefficient of the second term in the potential associated with graviton mass. When it is positive, the Hawking-Page phase transition can happen, while as it is negative, the black hole is always thermodynamically stable with a positive capacity. In canonical ensemble, the combination turns out to be $k+c_2m^2$ in the four dimensional case. When it is positive, a first order phase transition can happen between small and large black holes if the charge is less than its critical one. In higher dimensional ($n+2 ge 5$) case, even when the charge is absent, the small/large black hole phase transition can also appear, the coefficients for the third ($c_3m^2$) and/or the fourth ($c_4m^2$) terms in the potential associated with graviton mass in the massive gravity can play the same role as the charge does in the four dimensional case.
We study finite temperature correlation functions and quasinormal modes in a strongly coupled conformal field theory holographically dual to a small black hole in global Anti-de Sitter spacetime. Upon variation of the black hole radius, our results s moothly interpolate between known limits corresponding to large black holes and thermal AdS space. This implies that the quantities are continuous functions of energy density in the microcanonical ensemble, thus smoothly connecting the deconfined and confined phases that are separated by a first order phase transition in the canonical description.
The evolution of black holes in confining boxes is interesting for a number of reasons, particularly because it mimics the global structure of Anti-de Sitter geometries. These are non-globally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data is supplemented by boundary conditions at the time-like conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirror-like boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is only observed in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing boundary conditions, both the Newman-Penrose scalars Psi_4 and Psi_0 are non-trivial in our setup, and we show that the numerical data verifies the expected relations between them.
167 - Baocheng Zhang 2016
It is well-known that the thermal Hawking-like radiation can be emitted from the acoustic horizon, but the thermodynamic-like understanding for acoustic black holes was rarely made. In this paper, we will show that the kinematic connection can lead t o the dynamic connection at the horizon between the fluid and gravitational models in two dimension, which implies that there exists the thermodynamic-like description for acoustic black holes. Then, we discuss the first law of thermodynamics for the acoustic black hole via an intriguing connection between the gravitational-like dynamics of the acoustic horizon and thermodynamics. We obtain a universal form for the entropy of acoustic black holes, which has an interpretation similar to the entropic gravity. We also discuss the specific heat, and find that the derivative of the velocity of background fluid can be regarded as a novel acoustic analogue of the two-dimensional dilaton potential, which interprets why the two-dimensional fluid dynamics can be connected to the gravitational dynamics but difficult for four-dimensional case. In particular, when a constraint is added for the fluid, the analogue of a Schwarzschild black hole can be realized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا