ﻻ يوجد ملخص باللغة العربية
We consider the problem of direction-of-arrival (DOA) estimation in unknown partially correlated noise environments where the noise covariance matrix is sparse. A sparse noise covariance matrix is a common model for a sparse array of sensors consisted of several widely separated subarrays. Since interelement spacing among sensors in a subarray is small, the noise in the subarray is in general spatially correlated, while, due to large distances between subarrays, the noise between them is uncorrelated. Consequently, the noise covariance matrix of such an array has a block diagonal structure which is indeed sparse. Moreover, in an ordinary nonsparse array, because of small distance between adjacent sensors, there is noise coupling between neighboring sensors, whereas one can assume that nonadjacent sensors have spatially uncorrelated noise which makes again the array noise covariance matrix sparse. Utilizing some recently available tools in low-rank/sparse matrix decomposition, matrix completion, and sparse representation, we propose a novel method which can resolve possibly correlated or even coherent sources in the aforementioned partly correlated noise. In particular, when the sources are uncorrelated, our approach involves solving a second-order cone programming (SOCP), and if they are correlated or coherent, one needs to solve a computationally harder convex program. We demonstrate the effectiveness of the proposed algorithm by numerical simulations and comparison to the Cramer-Rao bound (CRB).
In this work, we propose an alternating low-rank decomposition (ALRD) approach and novel subspace algorithms for direction-of-arrival (DOA) estimation. In the ALRD scheme, the decomposition matrix for rank reduction is composed of a set of basis vect
The performance of the existing sparse Bayesian learning (SBL) methods for off-gird DOA estimation is dependent on the trade off between the accuracy and the computational workload. To speed up the off-grid SBL method while remain a reasonable accura
In this paper, we propose a two-dimensional (2D) joint transmit array interpolation and beamspace design for planar array mono-static multiple-input-multiple-output (MIMO) radar for direction-of-arrival (DOA) estimation via tensor modeling. Our under
We consider the problem of estimating high-dimensional covariance matrices of a particular structure, which is a summation of low rank and sparse matrices. This covariance structure has a wide range of applications including factor analysis and rando
Suppose that a solution $widetilde{mathbf{x}}$ to an underdetermined linear system $mathbf{b} = mathbf{A} mathbf{x}$ is given. $widetilde{mathbf{x}}$ is approximately sparse meaning that it has a few large components compared to other small entries.