ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-normal modes of superfluid neutron stars

142   0   0.0 ( 0 )
 نشر من قبل Leonardo Gualtieri
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study non-radial oscillations of neutron stars with superfluid baryons, in a general relativistic framework, including finite temperature effects. Using a perturbative approach, we derive the equations describing stellar oscillations, which we solve by numerical integration, employing different models of nucleon superfluidity, and determining frequencies and gravitational damping times of the quasi-normal modes. As expected by previous results, we find two classes of modes, associated to superfluid and non-superfluid degrees of freedom, respectively. We study the temperature dependence of the modes, finding that at specific values of the temperature, the frequencies of the two classes of quasi-normal modes show avoided crossings, and their damping times become comparable. We also show that, when the temperature is not close to the avoided crossings, the frequencies of the modes can be accurately computed by neglecting the coupling between normal and superfluid degrees of freedom. Our results have potential implications on the gravitational wave emission from neutron stars.



قيم البحث

اقرأ أيضاً

110 - Prasanta Char , Sayak Datta 2018
We investigate the tidal deformability of a superfluid neutron star. We calculate the equilibrium structure in the general relativistic two-fluid formalism with entrainment effect where we take neutron superfluid as one fluid and the other fluid is c omprised of protons and electrons, making it a charge neutral fluid. We use a relativistic mean field model for the equation of state of matter where the interaction between baryons is mediated by the exchange $sigma$, $omega$ and $rho$ mesons. Then, we study the linear, static $l=2$ perturbation on the star to compute the electric-type Love number following Hinderers prescription.
Information about the last stages of a binary neutron star inspiral and the final merger can be extracted from quasi-equilibrium configurations and dynamical evolutions. In this article, we construct quasi-equilibrium configurations for different spi ns, eccentricities, mass ratios, compactnesses, and equations of state. For this purpose we employ the SGRID code, which allows us to construct such data in previously inaccessible regions of the parameter space. In particular, we consider spinning neutron stars in isolation and in binary systems; we incorporate new methods to produce highly eccentric and eccentricity reduced data; we present the possibility of computing data for significantly unequal-mass binaries; and we create equal-mass binaries with individual compactness up to 0.23. As a proof of principle, we explore the dynamical evolution of three new configurations. First, we simulate a $q=2.06$ mass ratio which is the highest mass ratio for a binary neutron star evolved in numerical relativity to date. We find that mass transfer from the companion star sets in a few revolutions before merger and a rest mass of $sim10^{-2}M_odot$ is transferred between the two stars. This configuration also ejects a large amount of material during merger, imparting a substantial kick to the remnant. Second, we simulate the first merger of a precessing binary neutron star. We present the dominant modes of the gravitational waves for the precessing simulation, where a clear imprint of the precession is visible in the (2,1) mode. Finally, we quantify the effect of an eccentricity reduction procedure on the gravitational waveform. The procedure improves the waveform quality and should be employed in future precision studies, but also other errors, notably truncation errors, need to be reduced in order for the improvement due to eccentricity reduction to be effective. [abridged]
For the first time nonradial oscillations of superfluid nonrotating stars are self-consistently studied at finite stellar temperatures. We apply a realistic equation of state and realistic density dependent model of critical temperature of neutron an d proton superfluidity. In particular, we discuss three-layer configurations of a star with no neutron superfluidity at the centre and in the outer region of the core but with superfluid intermediate region. We show, that oscillation spectra contain a set of modes whose frequencies can be very sensitive to temperature variations. Fast temporal evolution of the pulsation spectrum in the course of neutron star cooling is also analysed.
We have studied the dynamics of an equal-mass magnetized neutron-star binary within a resistive magnetohydrodynamic (RMHD) approach in which the highly conducting stellar interior is matched to an electrovacuum exterior. Because our analysis is aimed at assessing the modifications introduced by resistive effects on the dynamics of the binary after the merger and through to collapse, we have carried out a close comparison with an equivalent simulation performed within the traditional ideal magnetohydrodynamic approximation. We have found that there are many similarities between the two evolutions but also one important difference: the survival time of the hyper massive neutron star increases in a RMHD simulation. This difference is due to a less efficient magnetic-braking mechanism in the resistive regime, in which matter can move across magnetic-field lines, thus reducing the outward transport of angular momentum. Both the RMHD and the ideal magnetohydrodynamic simulations carried here have been performed at higher resolutions and with a different grid structure than those in previous work of ours [L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, and M. A. Aloy, Astrophys. J. Letters 732, L6 (2011)], but confirm the formation of a low-density funnel with an ordered magnetic field produced by the black hole--torus system. In both regimes the magnetic field is predominantly toroidal in the highly conducting torus and predominantly poloidal in the nearly evacuated funnel. Reconnection processes or neutrino annihilation occurring in the funnel, none of which we model, could potentially increase the internal energy in the funnel and launch a relativistic outflow, which, however, is not produced in these simulations.
Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve t his riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا