ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy cluster scaling relations measured with APEX-SZ

145   0   0.0 ( 0 )
 نشر من قبل Amy Bender
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present thermal Sunyaev-Zeldovich effect (SZE) measurements for 42 galaxy clusters observed at 150 GHz with the APEX-SZ experiment. For each cluster, we model the pressure profile and calculate the integrated Comptonization $Y$ to estimate the total thermal energy of the intracluster medium (ICM). We compare the measured $Y$ values to X-ray observables of the ICM from the literature (cluster gas mass $M_{rm{gas}}$, temperature $T_X$, and $Y_X =M_{rm{gas}}T_X$) that relate to total cluster mass. We measure power law scaling relations, including an intrinsic scatter, between the SZE and X-ray observables for three subsamples within the set of 42 clusters that have uniform X-ray analysis in the literature. We observe that differences between these X-ray analyses introduce significant variability into the measured scaling relations, particularly affecting the normalization. For all three subsamples, we find results consistent with a self-similar model of cluster evolution dominated by gravitational effects. Comparing to predictions from numerical simulations, these scaling relations prefer models that include cooling and feedback in the ICM. Lastly, we measure an intrinsic scatter of $sim28$ per cent in the $Y-Y_X,$ scaling relation for all three subsamples.



قيم البحث

اقرأ أيضاً

531 - Adam B. Mantz 2016
We present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first su ch results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data are beginning to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range $0.0<z<0.5$ is consistent with self similarity, we find tentative evidence that the luminosity and temperature scatters respectively decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton $Y$ from Planck. While the richness--mass relation is in excellent agreement with recent work, the measured $Y$--mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. The latter result is consistent with earlier comparisons of lensing and Planck scaling-relation-derived masses.
159 - C. J. Short 2010
We use numerical simulations to investigate, for the first time, the joint effect of feedback from supernovae (SNe) and active galactic nuclei (AGN) on the evolution of galaxy cluster X-ray scaling relations. Our simulations are drawn from the Millen nium Gas Project and are some of the largest hydrodynamical N-body simulations ever carried out. Feedback is implemented using a hybrid scheme, where the energy input into intracluster gas by SNe and AGN is taken from a semi-analytic model of galaxy formation. This ensures that the source of feedback is a population of galaxies that closely resembles that found in the real universe. We show that our feedback model is capable of reproducing observed local X-ray scaling laws, at least for non-cool core clusters, but that almost identical results can be obtained with a simplistic preheating model. However, we demonstrate that the two models predict opposing evolutionary behaviour. We have examined whether the evolution predicted by our feedback model is compatible with observations of high-redshift clusters. Broadly speaking, we find that the data seems to favour the feedback model for z<0.5, and the preheating model at higher redshift. However, a statistically meaningful comparison with observations is impossible, because the large samples of high-redshift clusters currently available are prone to strong selection biases. As the observational picture becomes clearer in the near future, it should be possible to place tight constraints on the evolution of the scaling laws, providing us with an invaluable probe of the physical processes operating in galaxy clusters.
126 - B. J. Maughan 2012
In this paper, we introduce PICACS, a physically-motivated, internally consistent model of scaling relations between galaxy cluster masses and their observable properties. This model can be used to constrain simultaneously the form, scatter (includin g its covariance) and evolution of the scaling relations, as well as the masses of the individual clusters. In this framework, scaling relations between observables (such as that between X-ray luminosity and temperature) are modelled explicitly in terms of the fundamental mass-observable scaling relations, and so are fully constrained without being fit directly. We apply the PICACS model to two observational datasets, and show that it performs as well as traditional regression methods for simply measuring individual scaling relation parameters, but reveals additional information on the processes that shape the relations while providing self-consistent mass constraints. Our analysis suggests that the observed combination of slopes of the scaling relations can be described by a deficit of gas in low-mass clusters that is compensated for by elevated gas temperatures, such that the total thermal energy of the gas in a cluster of given mass remains close to self-similar expectations. This is interpreted as the result of AGN feedback removing low entropy gas from low mass systems, while heating the remaining gas. We deconstruct the luminosity-temperature (LT) relation and show that its steepening compared to self-similar expectations can be explained solely by this combination of gas depletion and heating in low mass systems, without any additional contribution from a mass dependence of the gas structure. Finally, we demonstrate that a self-consistent analysis of the scaling relations leads to an expectation of self-similar evolution of the LT relation that is significantly weaker than is commonly assumed.
169 - B. Comis 2011
We explore the scaling relation between the flux of the Sunyaev-Zeldovich (SZ) effect and the total mass of galaxy clusters using already reduced Chandra X-ray data present in the ACCEPT (Archive of Chandra Cluster Entropy Profile Tables) catalogue. The analysis is conducted over a sample of 226 objects, examining the relatively small scale corresponding to a cluster overdensity equal to 2500 times the critical density of the background universe, at which the total masses have been calculated exploiting the hydrostatic equilibrium hypothesis. Core entropy (K0) is strongly correlated with the central cooling time, and is therefore used to identify cooling-core (CC) objects in our sample. Our results confirm the self-similarity of the scaling relation between the integrated Comptonization parameter (Y) and the cluster mass, for both CC and NCC (non-cooling-core) clusters. The consistency of our calibration with recent ones has been checked, with further support for Y as a good mass proxy. We also investigate the robustness of the constant gas fraction assumption, for fixed overdensity, and of the Yx proxy (Kravstov et al. 2007) considering CC and NCC clusters, again sorted on K0 from our sample. We extend our study to implement a K0-proxy, obtained by combining SZ and X-ray observables, which is proposed to provide a CC indicator for higher redshift objects. Finally, we suggest that an SZ-only CC indicator could benefit from the employment of deprojected Comptonization radial profiles.
We describe Sunyaev-Zeldovich (SZ) effect measurements and analysis of the intracluster medium (ICM) pressure profiles of a set of 45 massive galaxy clusters imaged using Bolocam at the Caltech Submillimeter Observatory. We have used masses determine d from Chandra X-ray observations to scale each clusters profile by the overdensity radius R500 and the mass-and-redshift-dependent normalization factor P500. We deproject the average pressure profile of our sample into 13 logarithmically spaced radial bins between 0.07R500 and 3.5R500. We find that a generalized Navarro, Frenk, and White (gNFW) profile describes our data with sufficient goodness-of-fit and best-fit parameters (C500, alpha, beta, gamma, P0 = 1.18, 0.86, 3.67, 0.67, 4.29). We also use the X-ray data to define cool-core and disturbed subsamples of clusters, and we constrain the average pressure profiles of each of these subsamples. We find that given the precision of our data the average pressure profiles of disturbed and cool-core clusters are consistent with one another at R>~0.15R500, with cool-core systems showing indications of higher pressure at R<~0.15R500. In addition, for the first time, we place simultaneous constraints on the mass scaling of cluster pressure profiles, their ensemble mean profile, and their radius-dependent intrinsic scatter between 0.1R500 and 2.0R500. The scatter among profiles is minimized at radii between ~0.2R500 and ~0.5R500, with a value of ~20%. The best-fit mass scaling has a power-law slope of 0.49, which is shallower than the nominal prediction of 2/3 from self-similar hydrostatic equilibrium models. These results for the intrinsic scatter and mass scaling are largely consistent with previous analyses, most of which have relied heavily on X-ray derived pressures of clusters at significantly lower masses and redshifts compared to our sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا