ﻻ يوجد ملخص باللغة العربية
The ratio between two probability density functions is an important component of various tasks, including selection bias correction, novelty detection and classification. Recently, several estimators of this ratio have been proposed. Most of these methods fail if the sample space is high-dimensional, and hence require a dimension reduction step, the result of which can be a significant loss of information. Here we propose a simple-to-implement, fully nonparametric density ratio estimator that expands the ratio in terms of the eigenfunctions of a kernel-based operator; these functions reflect the underlying geometry of the data (e.g., submanifold structure), often leading to better estimates without an explicit dimension reduction step. We show how our general framework can be extended to address another important problem, the estimation of a likelihood function in situations where that function cannot be well-approximated by an analytical form. One is often faced with this situation when performing statistical inference with data from the sciences, due the complexity of the data and of the processes that generated those data. We emphasize applications where using existing likelihood-free methods of inference would be challenging due to the high dimensionality of the sample space, but where our spectral series method yields a reasonable estimate of the likelihood function. We provide theoretical guarantees and illustrate the effectiveness of our proposed method with numerical experiments.
A maximum likelihood methodology for a general class of models is presented, using an approximate Bayesian computation (ABC) approach. The typical target of ABC methods are models with intractable likelihoods, and we combine an ABC-MCMC sampler with
Approximate Bayesian Computation (ABC) is typically used when the likelihood is either unavailable or intractable but where data can be simulated under different parameter settings using a forward model. Despite the recent interest in ABC, high-dimen
We propose a likelihood ratio test framework for testing normal mean vectors in high-dimensional data under two common scenarios: the one-sample test and the two-sample test with equal covariance matrices. We derive the test statistics under the assu
Nonparametric empirical Bayes methods provide a flexible and attractive approach to high-dimensional data analysis. One particularly elegant empirical Bayes methodology, involving the Kiefer-Wolfowitz nonparametric maximum likelihood estimator (NPMLE
High-dimensional statistical inference with general estimating equations are challenging and remain less explored. In this paper, we study two problems in the area: confidence set estimation for multiple components of the model parameters, and model