ﻻ يوجد ملخص باللغة العربية
The Chamaeleon molecular cloud complex is one of the nearest star-forming sites encompassing three molecular clouds with a different star-formation history, from quiescent (Cha III) to actively forming stars (Cha II), and reaching the end of star-formation (Cha I). To charactize its large-scale structure, we derived column density and temperature maps using PACS and SPIRE observations from the Herschel Gould Belt Survey, and applied several tools, such as filament tracing, power-spectra, Delta-variance, and probability distribution functions of column density (PDFs), to derive physical properties. The column density maps reveal a different morphological appearance for the three clouds, with a ridge-like structure for Cha I, a clump-dominated regime for Cha II, and an intricate filamentary network for Cha III. The filament width is measured to be around 0.12pm0.04 pc in the three clouds, and the filaments found to be gravitationally unstable in Cha I and II, but mostly subcritical in Cha III. Faint filaments (striations) are prominent in Cha I showing a preferred alignment with the large-scale magnetic field. The PDFs of all regions show a lognormal distribution at low column densities. For higher densities, the PDF of Cha I shows a turnover indicative of an extended higher density component, culminating with a power-law tail. Cha II shows a power-law tail with a slope characteristic of gravity. The PDF of Cha III can be best fit by a single lognormal. The turbulence properties of the three regions are found to be similar, pointing towards a scenario where the clouds are impacted by large-scale processes. The magnetic field could possibly play an important role for the star-formation efficiency in the Chamaeleon clouds if proven that it can effectively channel material on Cha I, and possibly Cha II, but probably less efficiently on the quiescent Cha III cloud.
We perform ideal MHD high resolution AMR simulations with driven turbulence and self-gravity and find that long filamentary molecular clouds are formed at the converging locations of large-scale turbulence flows and the filaments are bounded by gravi
In an effort to simultaneously study the gas and dust components of the disc surrounding the young Herbig Ae star HD 169142, we present far-IR observations obtained with the PACS instrument onboard the Herschel Space Observatory. This work is part of
Herschels PACS instrument observed the environment of the binary system Mira Ceti in the 70 and 160 micron bands. These images reveal bright structures shaped as five broken arcs and fainter filaments in the ejected material of Miras primary star. Th
Galaxies form and evolve in the context of their local and large-scale environments. Their baryonic content that we observe with imaging and spectroscopy is intimately connected to the properties of their dark matter halos, and to their location in t
The use of standard rulers, such as the scale of the Baryonic Acoustic oscillations (BAO), has become one of the more powerful techniques employed in cosmology to probe the entity driving the accelerating expansion of the Universe. In this paper, the