ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical Equilibrium Solutions of Biochemical Systems with Synthesis and Degradation

127   0   0.0 ( 0 )
 نشر من قبل Inom Mirzaev
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Analyzing qualitative behaviors of biochemical reactions using its associated network structure has proven useful in diverse branches of biology. As an extension of our previous work, we introduce a graph-based framework to calculate steady state solutions of biochemical reaction networks with synthesis and degradation. Our approach is based on a labeled directed graph $G$ and the associated system of linear non-homogeneous differential equations with first order degradation and zeroth order synthesis. We also present a theorem which provides necessary and sufficient conditions for the dynamics to engender a unique stable steady state. Although the dynamics are linear, one can apply this framework to nonlinear systems by encoding nonlinearity into the edge labels. We answer open question from our previous work concerning the non-positiveness of the elements in the inverse of a perturbed Laplacian matrix. Moreover, we provide a graph theoretical framework for the computation of the inverse of a such matrix. This also completes our previous framework and makes it purely graph theoretical. Lately, we demonstrate the utility of this framework by applying it to a mathematical model of insulin secretion through ion channels and glucose metabolism in pancreatic $beta$-cells.



قيم البحث

اقرأ أيضاً

We consider the relationship between stationary distributions for stochastic models of reaction systems and Lyapunov functions for their deterministic counterparts. Specifically, we derive the well known Lyapunov function of reaction network theory a s a scaling limit of the non-equilibrium potential of the stationary distribution of stochastically modeled complex balanced systems. We extend this result to general birth-death models and demonstrate via example that similar scaling limits can yield Lyapunov functions even for models that are not complex or detailed balanced, and may even have multiple equilibria.
The phenomena of stochasticity in biochemical processes have been intriguing life scientists for the past few decades. We now know that living cells take advantage of stochasticity in some cases and counteract stochastic effects in others. The source of intrinsic stochasticity in biomolecular systems are random timings of individual reactions, which cumulatively drive the variability in outputs of such systems. Despite the acknowledged relevance of stochasticity in the functioning of living cells no rigorous method have been proposed to precisely identify sources of variability. In this paper we propose a novel methodology that allows us to calculate contributions of individual reactions into the variability of a systems output. We demonstrate that some reactions have dramatically different effects on noise than others. Surprisingly, in the class of open conversion systems that serve as an approximate model of signal transduction, the degradation of an output contributes half of the total noise. We also demonstrate the importance of degradation in other relevant systems and propose a degradation feedback control mechanism that has the capability of an effective noise suppression. Application of our method to some well studied biochemical systems such as: gene expression, Michaelis-Menten enzyme kinetics, and the p53 system indicates that our methodology reveals an unprecedented insight into the origins of variability in biochemical systems. For many systems an analytical decomposition is not available; therefore the method has been implemented as a Matlab package and is available from the authors upon request.
We introduce a mixed-integer linear programming (MILP) framework capable of determining whether a chemical reaction network possesses the property of being endotactic or strongly endotactic. The network property of being strongly endotactic is known to lead to persistence and permanence of chemical species under genetic kinetic assumptions, while the same result is conjectured but as yet unproved for general endotactic networks. The algorithms we present are the first capable of verifying endotacticity of chemical reaction networks for systems with greater than two constituent species. We implement the algorithms in the open-source online package CoNtRol and apply them to several well-studied biochemical examples, including the general $n$-site phosphorylation / dephosphorylation networks and a circadian clock mechanism.
Let $[A]: Y=AY$ with $Ain mathrm{M}_n (k)$ be a differential linear system. We say that a matrix $Rin {cal M}_{n}(bar{k})$ is a {em reduced form} of $[A]$ if $Rin mathfrak{g}(bar{k})$ and there exists $Pin GL_n (bar{k})$ such that $R=P^{-1}(AP-P)in m athfrak{g}(bar{k})$. Such a form is often the sparsest possible attainable through gauge transformations without introducing new transcendants. In this article, we discuss how to compute reduced forms of some symplectic differential systems, arising as variational equations of hamiltonian systems. We use this to give an effective form of the Morales-Ramis theorem on (non)-integrability of Hamiltonian systems.
In this, paper, we give a complete system of analytic invariants for the unfoldings of nonresonant linear differential systems with an irregular singularity of Poincare rank 1 at the origin over a fixed neighborhood $D_r$. The unfolding parameter $ep silon $ is taken in a sector S pointed at the origin of opening larger than $2 pi$ in the complex plane, thus covering a whole neighborhood of the origin. For each parameter value in S, we cover $D_r$ with two sectors and, over each sector, we construct a well chosen basis of solutions of the unfolded linear differential systems. This basis is used to find the analytic invariants linked to the monodromy of the chosen basis around the singular points. The analytic invariants give a complete geometric interpretation to the well-known Stokes matrices at $epsilon =0$: this includes the link (existing at least for the generic cases) between the divergence of the solutions at $epsilon =0$ and the presence of logarithmic terms in the solutions for resonance values of the unfolding parameter. Finally, we give a realization theorem for a given complete system of analytic invariants satisfying a necessary and sufficient condition, thus identifying the set of modules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا