ﻻ يوجد ملخص باللغة العربية
Stationary non-equilibrium states describe steady flows through macroscopic systems. Although they represent the simplest generalization of equilibrium states, they exhibit a variety of new phenomena. Within a statistical mechanics approach, these states have been the subject of several theoretical investigations, both analytic and numerical. The macroscopic fluctuation theory, based on a formula for the probability of joint space-time fluctuations of thermodynamic variables and currents, provides a unified macroscopic treatment of such states for driven diffusive systems. We give a detailed review of this theory including its main predictions and most relevant applications.
The Macroscopic Fluctuation Theory is an effective framework to describe transports and their fluctuations in classical out-of-equilibrium diffusive systems. Whether the Macroscopic Fluctuation Theory may be extended to the quantum realm and which fo
We examine the Hall conductivity of macroscopic two-dimensional quantum system, and show that the observed quantities can sometimes violate the fluctuation dissipation theorem (FDT), even in the linear response (LR) regime infinitesimally close to eq
In a recent work, Jarzynski and Wojcik (2004 Phys. Rev. Lett. 92, 230602) have shown by using the properties of Hamiltonian dynamics and a statistical mechanical consideration that, through contact, heat exchange between two systems initially prepare
In standard nucleation theory, the nucleation process is characterized by computing $DeltaOmega(V)$, the reversible work required to form a cluster of volume $V$ of the stable phase inside the metastable mother phase. However, other quantities beside
Starting from the microscopic description of a normal fluid in terms of any kind of local interacting many-particle theory we present a well defined step by step procedure to derive the hydrodynamic equations for the macroscopic phenomena. We specify