ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-ray Flare of PKS 1222+216 in 2010: Effect of Jet Dynamics at the Recollimation Zone

243   0   0.0 ( 0 )
 نشر من قبل Pankaj Kushwaha
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Pankaj Kushwaha




اسأل ChatGPT حول البحث

The $gamma$-ray flare of PKS 1222+216, observed in June 2010, is interpreted as an outcome of jet dynamics at recollimation zone. We obtained the $gamma$-ray light-curves in three different energy bands, namely, 100--300 MeV, 300 MeV--1 GeV and 1--3 GeV from observations by the emph{Fermi} Large Area Telescope (LAT). We also use the emph{Swift}--XRT flux from 0.3--10 keV obtained from archival data. We supplement these with the 0.07--0.4 TeV observations with MAGIC telescope, available in the literature. The detection of source at very high energy (VHE, $E>100$ GeV) with a differential photon spectral index of $2.7pm0.3$ and the rapid variability associated with it suggests that the emission arises from a compact region located beyond the broad line emitting region. The plausible $gamma$-ray emission mechanism can then be inverse Compton scattering of IR photons from obscuring torus. Further, the decay time of LAT flare cannot be explained by considering simple radiative loss mechanisms. Hence, to interpret the LAT light curves, we develop a model where the broadband emission originates from a compact region, arising plausibly from the compression of jet matter at the recollimation zone. The flare is then expressed as an outcome of jet deceleration probably associated with this focusing effect. The parameters of the model are further constrained by reproducing the broadband spectral energy distribution of the source obtained during the flare episode. Our study suggests that the particle energy density exceeds magnetic energy density by a large factor which in turn may cause rapid expansion of the emission region. However, near equipartition can be achieved towards the end of LAT flare during which the compact emission region would have expanded to the size of jet cross-section.



قيم البحث

اقرأ أيضاً

We present a high time resolution study of the two brightest $gamma$-ray outbursts from a blazar PKS 1222+216 observed by the textit{Fermi} Large Area Telescope (LAT) in 2010. The $gamma$-ray light-curves obtained in four different energy bands: 0.1- -3, 0.1--0.3, 0.3--1 and 1--3 GeV, with time bin of 6 hr, show asymmetric profiles with a similar rise time in all the bands but a rapid decline during the April flare and a gradual one during the June. The light-curves during the April flare show $sim 2$ days long plateau in 0.1--0.3 GeV emission, erratic variations in 0.3--1 GeV emission, and a daily recurring feature in 1--3 GeV emission until the rapid rise and decline within a day. The June flare shows a monotonic rise until the peak, followed by a gradual decline powered mainly by the multi-peak 0.1--0.3 GeV emission. The peak fluxes during both the flares are similar except in the 1--3 GeV band in April which is twice the corresponding flux during the June flare. Hardness ratios during the April flare indicate spectral hardening in the rising phase followed by softening during the decay. We attribute this behavior to the development of a shock associated with an increase in acceleration efficiency followed by its decay leading to spectral softening. The June flare suggests hardening during the rise followed by a complicated energy dependent behavior during the decay. Observed features during the June flare favor multiple emission regions while the overall flaring episode can be related to jet dynamics.
The optical properties of the z = 0.435 quasar PKS 1222+216 (4C+21.35) are summarized since the discovery of impressive gamma-ray activity in this source by Fermi/LAT. Unlike several other gamma-ray-bright blazars, there appears to be little connecti on between optical and gamma-ray activity. Spectropolarimetry shows this object to be a composite system with optical emission from both a polarized, variable synchrotron power-law and unpolarized light from a stable blue continuum source (+broad emission-line region) contributing to the observed spectrum. Spectrophotometry over a period of about two years does not detect significant variability in the strong, broad emission lines, despite large optical continuum variations. This suggests that the relativistic jet has little influence on the output of the broad emission-line region, possibly either because the highly beamed continuum ionizes only a small portion of the line-emitting gas, or the observed non-thermal continuum originates parsecs downstream from the base of the jet, further away from the central engine than the broad emission-line region.
We report on the detailed radio status of the M87 jet during the Very-High-Energy (VHE) gamma-ray flaring event in April 2010, obtained from high-resolution, multi-frequency, phase-referencing VLBA observations. We especially focus on the properties for the jet base (the radio core) and the peculiar knot HST-1, which are currently favored as the gamma-ray emitting sites. During the VHE flaring event, the HST-1 region remains stable in terms of its structure and flux density in the optically thin regime above 2GHz, being consistent with no signs of enhanced activities reported at X-ray for this feature. The radio core shows an inverted spectrum at least up to 43GHz during this event. Astrometry of the core position, which is specified as ~20Rs from the central engine in our previous study, shows that the core position is stable on a level of 4Rs. The core at 43 and 22GHz tends to show slightly (~10%) higher flux level near the date of the VHE flux peak compared with the epochs before/after the event. The size of the 43-GHz core is estimated to be ~17Rs, which is close to the size of the emitting region suggested from the observed time scale of rapid variability at VHE. These results tend to favor the scenario that the VHE gamma-ray flare in 2010 April is associated with the radio core.
We investigated the detailed radio structure of the jet of 1H 0323+342 using high-resolution multi-frequency Very Long Baseline Array observations. This source is known as the nearest $gamma$-ray emitting radio-loud narrow-line Seyfert 1 (NLS1) galax y. We discovered that the morphology of the inner jet is well characterized by a parabolic shape, indicating the jet being continuously collimated near the jet base. On the other hand, we found that the jet expands more rapidly at larger scales, resulting in a conical-like shape. The location of the collimation break is coincident with a bright quasi-stationary feature at 7 mas from core (corresponding to a deprojected distance of the order of $sim$100pc), where the jet width locally contracts together with highly polarized signals, suggesting a recollimation shock. We found that the collimation region is coincident with the region where the jet speed gradually accelerates, suggesting the coexistence of the jet acceleration and collimation zone, ending up with the recollimation shock, which could be a potential site of high-energy $gamma$-ray flares detected by the Fermi-LAT. Remarkably, these observational features of the 1H 0323+342 jet are overall very similar to those of the nearby radio galaxy M87 and HST-1 as well as some blazars, suggesting that a common jet formation mechanism might be at work. Based on the similarity of the jet profile between the two sources, we also briefly discuss the mass of the central black hole of 1H 0323+342, which is also still highly controversial on this source and NLS1s in general.
The GOES M2-class solar flare, SOL2010-06-12T00:57, was modest in many respects yet exhibited remarkable acceleration of energetic particles. The flare produced an ~50 s impulsive burst of hard X- and gamma-ray emission up to at least 400 MeV observe d by the Fermi GBM and LAT experiments. The remarkably similar hard X-ray and high-energy gamma-ray time profiles suggest that most of the particles were accelerated to energies >300 MeV with a delay of ~10 s from mildly relativistic electrons, but some reached these energies in as little as ~3 s. The gamma-ray line fluence from this flare was about ten times higher than that typically observed from this modest GOES class of X-ray flare. There is no evidence for time-extended >100 MeV emission as has been found for other flares with high-energy gamma rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا