ﻻ يوجد ملخص باللغة العربية
Hawkings calculation is unable to predict the final stage of the black hole evaporation. When effects of quantum gravity are taken into account, there is a minimal observable length. In this paper, we investigate fermions tunnelling from the charged and rotating black strings. With the influence of the generalized uncertainty principle, the Hawking temperatures are not only determined by the rings, but also affected by the quantum numbers of the emitted fermions. Quantum gravity corrections slow down the increases of the temperatures, which naturally leads to remnants left in the evaporation.
Kerner and Manns recent work shows that, for an uncharged and non-rotating black hole, its Hawking temperature can be exactly derived by fermions tunnelling from its horizons. In this paper, our main work is to improve the analysis to deal with charg
This contribution gives in sigma-model language a short review of recent work on T-duality for open strings in the presence of abelian or non-abelian gauge fields. Furthermore, it adds a critical discussion of the relation between RG beta-functions a
Recently the modified Dirac equation with Lorentz invariance violation has been proposed, which would be helpful to resolve some issues in quantum gravity theory and high energy physics. In this paper, the modified Dirac equation has been generalized
A generalized action for strings which is a sum of the Nambu-Goto and the extrinsic curvature (the energy integral of the surface) terms, is used to couple strings to gravity. It is shown that the conical singularity has deficit angle that has contri
We consider classical superstrings propagating on AdS_5 x S^5 space-time. We consistently truncate the superstring equations of motion to the so-called su(1|1) sector. By fixing the uniform gauge we show that physical excitations in this sector are d