ﻻ يوجد ملخص باللغة العربية
We analyze topological properties of the one-dimensional Bose-Hubbard model with a quasiperiodic superlattice potential. This system can be realized in interacting ultracold bosons in optical lattice in the presence of an incommensurate superlattice potential. We first analyze the quasiperiodic superlattice made by the cosine function, which we call Harper-like Bose-Hubbard model. We compute the Chern number and observe a gap-closing behavior as the interaction strength $U$ is changed. Also, we discuss the bulk-edge correspondence in our system. Furthermore, we explore the phase diagram as a function of $U$ and a continuous deformation parameter $beta$ between the Harper-like model and another important quasiperiodic lattice, the Fibonacci model. We numerically confirm that the incommensurate charge density wave (ICDW) phase is topologically non-trivial and it is topologically equivalent in the whole ICDW region.
A single-particle mobility edge (SPME) marks a critical energy separating extended from localized states in a quantum system. In one-dimensional systems with uncorrelated disorder, a SPME cannot exist, since all single-particle states localize for ar
We show that the dynamics of cold bosonic atoms in a two-dimensional square optical lattice produced by a bichromatic light-shift potential is described by a Bose-Hubbard model with an additional effective staggered magnetic field. In addition to the
We investigate the propagation of density-wave packets in a Bose-Hubbard model using the adaptive time-dependent density-matrix renormalization group method. We discuss the decay of the amplitude with time and the dependence of the velocity on densit
We present a brief overview of the phases and dynamics of ultracold bosons in an optical lattice in the presence of a tilt. We begin with a brief summary of the possible experimental setup for generating the tilt. This is followed by a discussion of
We study a flow of ultracold bosonic atoms through a one-dimensional channel that connects two macroscopic three-dimensional reservoirs of Bose-condensed atoms via weak links implemented as potential barriers between each of the reservoirs and the ch