ﻻ يوجد ملخص باللغة العربية
We quantitatively assess, by means of comprehensive numerical simulations, the ability of broad-band photometric surveys to recover the broad emission line region (BLR) size in quasars under various observing conditions and for a wide range of object properties. Focusing on the general characteristics of the Large Synoptic Survey Telescope (LSST), we find that the slope of the size-luminosity relation for the BLR in quasars can be determined with unprecedented accuracy, of order a few percent, over a broad luminosity range and out to $zsim 3$. In particular, major emission lines for which the BLR size can be reliably measured with LSST include H$alpha$, MgII $lambda 2799$, CIII] $lambda 1909$, CIV $lambda 1549$, and Ly$alpha$, amounting to a total of $gtrsim 10^5$ time-delay measurements for all transitions. Combined with an estimate for the emission line velocity dispersion, upcoming photometric surveys will facilitate the estimation of black hole masses in AGN over a broad range of luminosities and redshifts, allow for refined calibrations of BLR size-luminosity-redshift relations in different transitions, as well as lead to more reliable cross-calibration with other black hole mass estimation techniques.
A method is proposed for measuring the size of the broad emission line region (BLR) in quasars using broadband photometric data. A feasibility study, based on numerical simulations, points to the advantages and pitfalls associated with this approach.
By using standard broad-band VRI photometry we were able to discriminate the variations of the broad hydrogen alpha line from the continuum variations for the active galaxy Mkn 279. Cross-correlating both light curves enabled us to determine the time
Owing to the advent of large area photometric surveys, the possibility to use broad band photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei, has raised a large interest. We describe here a new
We present results of broad band photometric reverberation mapping (RM) to measure the radius of the broad line region, and subsequently the black hole mass (M$_{rm BH}$), in the nearby, low luminosity active galactic nuclei (AGN) NGC 4395. Using the
The long wavelength modes lost to bright foregrounds in the interferometric 21-cm surveys can partially be recovered using a forward modeling approach that exploits the non-linear coupling between small and large scales induced by gravitational evolu