ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable Extra Dimensional Spacetime and Solution to Initial Singularity Paradox of Our Universe From Extra Dimensions

121   0   0.0 ( 0 )
 نشر من قبل Yong-Chang Huang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Considering a n-dimensional general spacetime, we deduce its 4-dimensional Einstein equation and Friedman equations, and discover a general dual relation between the scale factor $a(t)$ of our universe and the scale factor $B(t)$ of extra dimensions. Based on the dual relation equation, predictions of shrinking of extra dimensions and free of singularity problem of our universe are given. Therefore, solution to initial singularity paradox of our universe is achieved. Because the dual relation is general, this Letter discovers that it is just the extra dimensional shrinking contribution that results in our universes expanding in terms of the dual relation in the bulk space, and actually the dual relation is deduced doesnt depend on the 4-dimensional matter concrete Lagrangian, these are key important for a lot of future relative investigations.



قيم البحث

اقرأ أيضاً

55 - U. Guenther , A. Zhuk 1997
Inhomogeneous multidimensional cosmological models with a higher dimensional space-time manifold are investigated under dimensional reduction. In the Einstein conformal frame, small excitations of the scale factors of the internal spaces near minima of an effective potential have a form of massive scalar fields in the external space-time. Parameters of models which ensure minima of the effective potentials are obtained for particular cases and masses of gravitational excitons are estimated.
This paper provides a pedagogical introduction to the physics of extra dimensions focussing on the ADD, Randall-Sundrum and DGP models. In each of these models, the familiar particles and fields of the standard model are assumed to be confined to a f our dimensional space-time called the brane; the brane is a slice through a higher dimensional space-time called the bulk. The geometry of the ADD, Randall-Sundrum and DGP space-times is described and the relation between Randall-Sundrum and Anti-de-Sitter space-time is explained. The necessary differential geometry background is introduced in an appendix that presumes no greater mathematical preparation than multivariable calculus. The ordinary wave equation and the Klein-Gordon equation are briefly reviewed followed by an analysis of the propagation of scalar waves in the bulk in all three extra-dimensional models. We also calculate the scalar field produced by a static point source located on the brane for all three models. For the ADD and Randall-Sundrum models at large distances the field looks like that of a point source in four space-time dimensions but at short distances it crosses over to a form appropriate to the higher dimensional space-time. For the DGP model the field has the higher dimensional form at long distances rather than short. The scalar field results provide qualitative insights into the corresponding behavior of gravitational fields. In particular the explanation within the ADD and Randall-Sundrum model of the weakness of gravity compared to other forces is discussed as are the implications of the two models for colliders and other experiments.
In 6D general relativity with a phantom scalar field as a source of gravity, we present solutions that implement a transition from an effective 4D geometry times small extra dimensions to an effectively 6D space-time where the physical laws are diffe rent from ours. We consider manifolds with the structure M0 x M1 x M2, where M0 is 2D Lorentzian space-time while each of M1 and M2 can be a 2-sphere or a 2-torus. Some solutions describe wormholes with spherical symmetry in our space-time and toroidal extra dimensions. Others are of black universe type: at one end there is a 6D asymptotically anti-de Sitter black hole while beyond the horizon the geometry tends to a 4D de Sitter cosmology times a small 2D spherical extra space.
126 - F.L. Bezrukov , Y. Burnier 2009
We show that the strong CP problem can, in principle, be solved dynamically by adding extra-dimensions with compact topology. To this aim we consider a toy model for QCD, which contains a vacuum angle and a strong CP like problem. We further consider a higher dimensional theory, which has a trivial vacuum structure and which reproduces the perturbative properties of the toy model in the low-energy limit. In the weak coupling regime, where our computations are valid, we show that the vacuum structure of the low-energy action is still trivial and the strong CP problem is solved. No axion-like particle occur in this setup and therefore it is not ruled out by astrophysical bounds.
We describe a novel approach to dimensional reduction in classical field theory. Inspired by ideas from noncommutative geometry, we introduce extended algebras of differential forms over space-time, generalized exterior derivatives and generalized co nnections associated with the geometry of space-times with discrete extra dimensions. We apply our formalism to theories of gauge- and gravitational fields and find natural geometrical origins for an axion- and a dilaton field, as well as a Higgs field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا