A quantum Schwarzschild black hole is described, at the mini super spacetime level, by a non-singular wave packet composed of plane wave eigenstates of the momentum Dirac-conjugate to the mass operator. The entropy of the mass spectrum acquires then independent contributions from the average mass and the width. Hence, Bekensteins area entropy is formulated using the $langle text{mass}^2 rangle$ average, leaving the $langle text{mass} rangle$ average to set the Hawking temperature. The width function peaks at the Planck scale for an elementary (zero entropy, zero free energy) micro black hole of finite rms size, and decreases Doppler-like towards the classical limit.