ﻻ يوجد ملخص باللغة العربية
A quantum Schwarzschild black hole is described, at the mini super spacetime level, by a non-singular wave packet composed of plane wave eigenstates of the momentum Dirac-conjugate to the mass operator. The entropy of the mass spectrum acquires then independent contributions from the average mass and the width. Hence, Bekensteins area entropy is formulated using the $langle text{mass}^2 rangle$ average, leaving the $langle text{mass} rangle$ average to set the Hawking temperature. The width function peaks at the Planck scale for an elementary (zero entropy, zero free energy) micro black hole of finite rms size, and decreases Doppler-like towards the classical limit.
The Renyi and Tsallis entropies are discussed as possible alternatives to the Bekenstein-Hawking area-law entropy. It is pointed out how replacing the entropy notion, but not the Hawking temperature and the thermodynamical energy may render the whole
The Barrow entropy appears from the fact that the black hole surface can be modified due to quantum gravitational outcome. The measure of this perturbation is given by a new exponent $Delta$. In this letter we have shown that, from the standard mathe
If general relativity is spontaneously induced, the black hole limit is governed by a phase transition which occurs precisely at the would have been horizon. The exterior Schwarzschild solution then connects with a novel core of vanishing spatial vol
We review aspects of the thermodynamics of black holes and in particular take into account the fact that the quantum entanglement between the degrees of freedom of a scalar field, traced inside the event horizon, can be the origin of black hole entro
In this article we compute the black hole entropy by finding a classical central charge of the Virasoro algebra of a Liouville theory using the Cardy formula. This is done by performing a dimensional reduction of the Einstein Hilbert action with the