Covariant density functional theory (CDFT) is a modern theoretical tool for the description of nuclear structure phenomena. The current investigation aims at the global assessment of the accuracy of the description of the ground state properties of even-even nuclei. We also estimate {it theoretical uncertainties} defined here as the spreads of predictions within four covariant energy density functionals (CEDF) in known regions of the nuclear chart and their propagation towards the neutron drip line. Large-scale axial relativistic Hartree-Bogoliubov (RHB) calculations are performed for all $Zleq 104$ even-even nuclei between the two-proton and two-neutron drip lines with four modern covariant energy density functionals such as NL3*, DD-ME2, DD-ME$delta$ and DD-PC1. The physical observables of interest include the binding energies, two-particle separation energies, charge quadrupole deformations, isovector deformations, charge radii, neutron skin thicknesses and the positions of the two-proton and two-neutron drip lines. The predictions for the two-neutron drip line are also compared in a systematic way with the ones obtained in non-relativistic models. As an example, the data set of the calculated properties of even-even nuclei obtained with DD-PC1 CEDF is provided as Supplemental Material with this article (file ddpc1.pdf).