ﻻ يوجد ملخص باللغة العربية
We consider the problem of clustering a graph $G$ into two communities by observing a subset of the vertex correlations. Specifically, we consider the inverse problem with observed variables $Y=B_G x oplus Z$, where $B_G$ is the incidence matrix of a graph $G$, $x$ is the vector of unknown vertex variables (with a uniform prior) and $Z$ is a noise vector with Bernoulli$(varepsilon)$ i.i.d. entries. All variables and operations are Boolean. This model is motivated by coding, synchronization, and community detection problems. In particular, it corresponds to a stochastic block model or a correlation clustering problem with two communities and censored edges. Without noise, exact recovery (up to global flip) of $x$ is possible if and only the graph $G$ is connected, with a sharp threshold at the edge probability $log(n)/n$ for ErdH{o}s-Renyi random graphs. The first goal of this paper is to determine how the edge probability $p$ needs to scale to allow exact recovery in the presence of noise. Defining the degree (oversampling) rate of the graph by $alpha =np/log(n)$, it is shown that exact recovery is possible if and only if $alpha >2/(1-2varepsilon)^2+ o(1/(1-2varepsilon)^2)$. In other words, $2/(1-2varepsilon)^2$ is the information theoretic threshold for exact recovery at low-SNR. In addition, an efficient recovery algorithm based on semidefinite programming is proposed and shown to succeed in the threshold regime up to twice the optimal rate. For a deterministic graph $G$, defining the degree rate as $alpha=d/log(n)$, where $d$ is the minimum degree of the graph, it is shown that the proposed method achieves the rate $alpha> 4((1+lambda)/(1-lambda)^2)/(1-2varepsilon)^2+ o(1/(1-2varepsilon)^2)$, where $1-lambda$ is the spectral gap of the graph $G$.
We consider the problem of decoding a discrete signal of categorical variables from the observation of several histograms of pooled subsets of it. We present an Approximate Message Passing (AMP) algorithm for recovering the signal in the random dense
In the long-studied problem of combinatorial group testing, one is asked to detect a set of $k$ defective items out of a population of size $n$, using $m ll n$ disjunctive measurements. In the non-adaptive setting, the most widely used combinatorial
This paper is concerned with the problem of recovering a structured signal from a relatively small number of corrupted random measurements. Sharp phase transitions have been numerically observed in practice when different convex programming procedure
Reed-Muller codes are some of the oldest and most widely studied error-correcting codes, of interest for both their algebraic structure as well as their many algorithmic properties. A recent beautiful result of Saptharishi, Shpilka and Volk showed th
A new family of operators, coined hierarchical measurement operators, is introduced and discussed within the well-known hierarchical sparse recovery framework. Such operator is a composition of block and mixing operations and notably contains the Kro