ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting cascade electron refrigerator

480   0   0.0 ( 0 )
 نشر من قبل Herve Courtois
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance and limitations of such a device.



قيم البحث

اقرأ أيضاً

Micro-refrigerators that operate in the sub-kelvin regime are a key device in quantum technology. A well-studied candidate, an electronic cooler using Normal metal - Insulator - Superconductor (NIS) tunnel junctions offers substantial performance and power. However, its superconducting electrodes are severely overheated due to exponential suppression of their thermal conductance towards low temperatures, and the cooler performs unsatisfactorily - especially in powerful devices needed for practical applications. We employ a second NIS cooling stage to thermalize the hot superconductor at the backside of the main NIS cooler. Not only providing a lower bath temperature, the second stage cooler actively evacuates quasiparticles out of the hot superconductor, especially in the low temperature limit. The NIS cooler approaches its ideal theoretical expectations without compromising cooling power. This cascade design can also be employed to manage excess heat in other cryo-electronic devices.
We propose a solid state refrigeration technique based on repeated adiabatic magnetization/demagnetization cycles of a superconductor which acts as the working substance. The gradual cooling down of a substrate (normal metal) in contact with the work ing substance is demonstrated for different initial temperatures of the substrate. Excess heat is given to a hot large-gap superconductor. The on-chip refrigerator works in a cyclic manner because of an effective thermal switching mechanism: Heat transport between N/N versus N/S junctions is asymmetric because of the appearance of the energy gap. This switch permits selective cooling of the metal. We find that this refrigeration technique can cool down a 0.3cm$^{3}$ block of Cu by almost two orders of magnitude starting from 200mK, and down to about 1mK starting from the base temperature of a dilution fridge (10mK). The corresponding cooling power for a 1cm$times$1cm interface are 25 nW and 0.06 nW respectively, which scales with the area of the interface.
The kagome lattice of transition metal atoms provides an exciting platform to study electronic correlations in the presence of geometric frustration and nontrivial band topology, which continues to bear surprises. In this work, using spectroscopic im aging scanning tunneling microscopy, we discover a cascade of different symmetry-broken electronic states as a function of temperature in a new kagome superconductor, CsV3Sb5. At a temperature far above the superconducting transition Tc ~ 2.5 K, we reveal a tri-directional charge order with a 2a0 period that breaks the translation symmetry of the lattice. As the system is cooled down towards Tc, we observe a prominent V-shape spectral gap opening at the Fermi level and an additional breaking of the six-fold rotation symmetry, which persists through the superconducting transition. This rotation symmetry breaking is observed as the emergence of an additional 4a0 unidirectional charge order and strongly anisotropic scattering in differential conductance maps. The latter can be directly attributed to the orbital-selective renormalization of the V kagome bands. Our experiments reveal a complex landscape of electronic states that can co-exist on a kagome lattice, and provide intriguing parallels to high-Tc superconductors and twisted bilayer graphene.
We show how a superconducting region (S) sandwiched between two normal leads (N), in the presence of barriers, can act as a lens for propagating electron and hole waves by virtue of the so- called crossed Andreev reflection (CAR). The CAR process whi ch is equivalent to the Cooper pair splitting into the two N electrodes provides a unique possibility of constructing entangled electrons in solid state systems. When electrons are locally injected from an N lead, due to the CAR and normal reflection of quasiparticles by the insulating barriers at the interfaces, sequences of electron and hole focuses are established inside another N electrode. This behavior originates from the change of momentum during electron-hole conversion beside the successive normal reflections of electrons and holes due to the barriers. The focusing phenomena studied here is fundamentally different from the electron focusing in other systems like graphene pn junctions. In particular due to the electron-hole symmetry of superconducting state, the focusing of electrons and holes are robust against thermal excitations. Furthermore the effect of superconducting layer width, the injection point position, and barriers strength is investigated on the focusing behavior of the junction. Very intriguingly, it is shown that by varying the barriers strength, one can separately control the density of electrons or holes at the focuses.
263 - P. Bushev , D. Bothner , J. Nagel 2010
We propose to couple a trapped single electron to superconducting structures located at a variable distance from the electron. The electron is captured in a cryogenic Penning trap using electric fields and a static magnetic field in the Tesla range. Measurements on the electron will allow investigating the properties of the superconductor such as vortex structure, damping and decoherence. We propose to couple a superconducting microwave resonator to the electron in order to realize a circuit QED-like experiment, as well as to couple superconducting Josephson junctions or superconducting quantum interferometers (SQUIDs) to the electron. The electron may also be coupled to a vortex which is situated in a double well potential, realized by nearby pinning centers in the superconductor, acting as a quantum mechanical two level system that can be controlled by a transport current tilting the double well potential. When the vortex is trapped in the interferometer arms of a SQUID, this would allow its detection both by the SQUID and by the electron.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا