ﻻ يوجد ملخص باللغة العربية
Several trends have been identified in the prompt gamma-ray burst (GRB) emission: e.g. hard-to-soft evolution, pulse width evolution with energy, time lags, hardness-intensity/-fluence correlations. Recently Fermi has significantly extended the spectral coverage of GRB observations and improved the characterization of this spectral evolution. We study how internal shocks can reproduce these observations. In this model the emission comes from the synchrotron radiation of shock accelerated electrons, and the spectral evolution is governed by the evolution of the physical conditions in the shocked regions. We present a comprehensive set of simulations of a single pulse and investigate the impact of the model parameters, related to the shock microphysics and to the initial conditions in the ejecta. We find a general qualitative agreement between the model and the various observations used for the comparison. All these properties or relations are governed by the evolution of the peak energy and photon indices of the spectrum. In addition, we identify the conditions for a quantitative agreement. We find that the best agreement is obtained for (i) steep electron slopes (p>~2.7), (ii) microphysics parameters varying with shock conditions so that more electrons are accelerated in stronger shocks, (iii) steep variations of the initial Lorentz factor in the ejecta. When simulating short GRBs by contracting all timescales, all other parameters being unchanged, we show that the hardness-duration correlation is reproduced, as well as the evolution with duration of the pulse properties. Finally, we investigate the signature at high energy of these different scenarios and find distinct properties - delayed onset, longer emission, and flat spectrum in some cases - suggesting that internal shocks could have a significant contribution to the prompt LAT emission. [abridged]
Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emiss
The prompt emission of gamma-ray bursts probably comes from a highly relativistic wind which converts part of its kinetic energy into radiation via the formation of shocks within the wind itself. Such internal shocks can occur if the wind is generate
We study the spectral evolution of 13 short duration Gamma Ray Bursts (GRBs) detected by the Gamma Burst Monitor (GBM) on board Fermi. We study spectra resolved in time at the level of 2-512 ms in the 8 keV-35 MeV energy range. We find a strong corre
We compare the spectral properties of 227 Gamma Ray Bursts (GRBs) detected by the Fermi Gamma Ray Burst Monitor (GBM) up to February 2010 with those of bursts detected by the CGRO/BATSE instrument. Out of 227 Fermi GRBs, 166 have a measured peak ener
The prompt GRB emission is thought to arise from electrons accelerated in internal shocks propagating within a highly relativistic outflow. The launch of Fermi offers the prospect of observations with unprecedented sensitivity in high-energy (>100 Me