ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme thermopower anisotropy and interchain transport in the quasi-one-dimensional metal Li(0.9)Mo(6)O(17)

178   0   0.0 ( 0 )
 نشر من قبل Joshua L. Cohn
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermopower and electrical resistivity measurements transverse to the conducting chains of the quasi-one-dimensional metal Li(0.9)Mo(6)O(17) are reported in the temperature range 5 K <= T <= 500 K. For T>= 400 K the interchain transport is determined by thermal excitation of charge carriers from a valence band ~ 0.14 eV below the Fermi level, giving rise to a large, p-type thermopower that coincides with a small, n-type thermopower along the chains. This dichotomy -- semiconductor-like in one direction and metallic in a mutually perpendicular direction -- gives rise to substantial transverse thermoelectric (TE) effects and a transverse TE figure of merit among the largest known for a single compound.



قيم البحث

اقرأ أيضاً

A correlation between lattice parameters, oxygen composition, and the thermoelectric and Hall coefficients is presented for single-crystal Li(0.9)Mo(6)O(17), a quasi-one-dimensional (Q1D) metallic compound. The possibility that this compound is a com pensated metal is discussed in light of a substantial variability observed in the literature for these transport coefficients.
The Nernst coefficient for the quasi-one-dimensional metal, Li(0.9)Mo(6)O(17), is found to be among the largest known for metals (~500 microV/KT at T~20K), and is enhanced in a broad range of temperature by orders of magnitude over the value expected from Boltzmann theory for carrier diffusion. A comparatively small Seebeck coefficient implies that Li(0.9)Mo(6)O(17) is bipolar with large, partial Seebeck coefficients of opposite sign. A very large thermomagnetic figure of merit, ZT~0.5, is found at high field in the range T~35-50K.
We report a detailed magnetotransport study of the highly anisotropic quasi-one-dimensional oxide Li$_{0.9}$Mo$_6$O$_{17}$ whose in-chain electrical resistivity diverges below a temperature $T_{rm min} sim$ 25 K. For $T < T_{rm min}$, a magnetic fiel d applied parallel to the conducting chain induces a large negative magnetoresistance and ultimately, the recovery of a metallic state. We show evidence that this insulator/metal crossover is a consequence of field-induced suppression of a density-wave gap in a highly one-dimensional conductor. At the highest fields studied, there is evidence for the possible emergence of a novel superconducting state with an onset temperature $T_c >$ 10 K.
The upper critical field $H_{c2}$ of purple bronze Li$_{0.9}$Mo$_6$O$_{17}$ is found to exhibit a large anisotropy, in quantitative agreement with that expected from the observed electrical resistivity anisotropy. With the field aligned along the mos t conducting axis, $H_{c2}$ increases monotonically with decreasing temperature to a value five times larger than the estimated paramagnetic pair-breaking field. Theories for the enhancement of $H_{c2}$ invoking spin-orbit scattering or strong-coupling superconductivity are shown to be inadequate in explaining the observed behavior, suggesting that the pairing state in Li$_{0.9}$Mo$_6$O$_{17}$ is unconventional and possibly spin-triplet.
We use scanning tunneling microscopy to study the lithium purple bronze (Li$_{0.9}$Mo$_{6}$O$_{17}$) at room temperature. Our measurements allow us to identify the single-crystal cleave plane and show that it is possible to obtain clean cleaved surfa ces reflecting the crystal structure without the complications of nanoscale surface disorder. In addition to the crystal lattice, we observe a coexisting discommensurate superlattice with wavevectors q = 0.5a* $pm$ 0.25b*. We propose that the origin of the superstructure is a surface reconstruction which is driven by cleaving along a crystal plane which contains in-plane MoO$_{4}$ tetrahedra connected to out-of-plane MoO$_{6}$ octahedra through corner-sharing oxygens. When combined with spectroscopic measurements, our studies show a promising avenue through which to study the complex physics within Li$_{0.9}$Mo$_{6}$O$_{17}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا