ترغب بنشر مسار تعليمي؟ اضغط هنا

Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector

271   0   0.0 ( 0 )
 نشر من قبل Yuan Lu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a large electrical spin injection into GaAs at zero magnetic field thanks to an ultrathin perpendicularly magnetized CoFeB contact of a few atomic planes (1.2 nm). The spin-polarization of electrons injected into GaAs was examined by the circular polarization of electroluminescence from a Spin Light Emitting Diode with embedded InGaAs/GaAs quantum wells. The electroluminescence polarization as a function of the magnetic field closely traces the out-of-plane magnetization of the CoFeB/MgO injector. A circular polarization degree of the emitted light as large as 20% at 25 K is achieved at zero magnetic field. Moreover the electroluminescence circular polarization is still about 8% at room temperature.



قيم البحث

اقرأ أيضاً

201 - L. Grenet , M. Jamet , P. Noe 2009
In this letter, we show efficient electrical spin injection into a SiGe based textit{p-i-n} light emitting diode from the remanent state of a perpendicularly magnetized ferromagnetic contact. Electron spin injection is carried out through an alumina tunnel barrier from a Co/Pt thin film exhibiting a strong out-of-plane anisotropy. The electrons spin polarization is then analysed through the circular polarization of emitted light. All the light polarization measurements are performed without an external applied magnetic field textit{i.e.} in remanent magnetic states. The light polarization as a function of the magnetic field closely traces the out-of-plane magnetization of the Co/Pt injector. We could achieve a circular polarization degree of the emitted light of 3 % at 5 K. Moreover this light polarization remains almost constant at least up to 200 K.
We report on efficient spin injection in p-doped InGaAs/GaAs quantum-dot (QD) spin light emitting diode (spin-LED) under zero applied magnetic field. A high degree of electroluminescence circular polarization (Pc) ~19% is measured in remanence up to 100K. This result is obtained thanks to the combination of a perpendicularly magnetized CoFeB/MgO spin injector allowing efficient spin injection and an appropriate p-doped InGaAs/GaAs QD layer in the active region. By analyzing the bias and temperature dependence of the electroluminescence circular polarization, we have evidenced a two-step spin relaxation process. The first step occurs when electrons tunnel through the MgO barrier and travel across the GaAs depletion layer. The spin relaxation is dominated by the Dyakonov-Perel mechanism related to the kinetic energy of electrons, which is characterized by a bias dependent Pc. The second step occurs when electrons are captured into QDs prior to their radiative recombination with holes. The temperature dependence of Pc reflects the temperature induced modification of the QDs doping, together with the variation of the ratio between the charge carrier lifetime and the spin relaxation time inside the QDs. The understanding of these spin relaxation mechanisms is essential to improve the performance of spin LED for future spin optoelectronic applications at room temperature under zero applied magnetic field.
116 - P. Barate , S. Liang , T. T. Zhang 2020
An efficient electrical spin injection into an InGaAs/GaAs quantum well light emitting diode is demonstrated thanks to a CoFeB/MgO spin injector. The textured MgO tunnel barrier is fabricated by two different techniques: sputtering and molecular beam epitaxy (MBE). The maximal spin injection efficiency is comparable for both methods. Additionally, the effect of annealing is also investigated for the two types of samples. Both samples show the same trend: an increase of the electroluminescence circular polarization (Pc) with the increase of annealing temperature, followed by a saturation of Pc beyond 350{deg}C annealing. Since the increase of Pc starts well below the crystallization temperature of the full CoFeB bulk layer, this trend could be mainly due to an improvement of chemical structure at the top CoFeB/MgO interface. This study reveals that the control of CoFeB/MgO interface is essential important for an optimal spin injection into semiconductor.
56 - Yu Yan , Cong Lu , Hongqing Tu 2016
Nanoscale CoFeB amorphous films have been synthesized on GaAs(100) and studied with X-ray magnetic circular dichroism (XMCD) and transmission electron microscopy (TEM). We have found that the ratios of the orbital to spin magnetic moments of both the Co and Fe in the ultrathin amorphous film have been enhanced by more than 300% compared with those of the bulk crystalline Co and Fe, and in specifically, a large orbital moment of 0.56*10^-6 B from the Co atoms has been observed and at the same time the spin moment of the Co atoms remains comparable to that of the bulk hcp Co. The results indicate that the large uniaxial magnetic anisotropy (UMA) observed in the ultrathin CoFeB film on GaAs(100) is related to the enhanced spin-orbital coupling of the Co atoms in the CoFeB. This work offers experimental evidences of the correlation between the UMA and the elementary specific spin and orbital moments in the CoFeB amorphous film on the GaAs(100) substrate, which is significant for spintronics applications.
Spin current generated by spin Hall effect in the heavy metal would diffuse up and down to adjacent ferromagnetic layers and exert torque on their magnetization, called spin-orbit torque. Antiferromagnetically coupled trilayers, namely the so-called synthetic antiferromagnets (SAF), are usually employed to serve as the pinned layer of spintronic devices based on spin valves and magnetic tunnel junctions to reduce the stray field and/or increase the pinning field. Here we investigate the spin-orbit torque in MgO/CoFeB/Ta/CoFeB/MgO perpendicularly magnetized multilayer with interlayer antiferromagnetic coupling. It is found that the magnetization of two CoFeB layers can be switched between two antiparallel states simultaneously. This observation is replicated by the theoretical calculations by solving Stoner-Wohlfarth model and Landau-Lifshitz-Gilbert equation. Our findings combine spin-orbit torque and interlayer coupling, which might advance the magnetic memories with low stray field and low power consumption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا