ترغب بنشر مسار تعليمي؟ اضغط هنا

Realization of magnetic monopoles current in an artificial spin ice device: A step towards magnetronics

328   0   0.0 ( 0 )
 نشر من قبل Winder Alexander Moura-Melo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetricity- the magnetic equivalent of electricity- was recently verified experimentally for the first time. Indeed, just as the stream of electric charges produces electric current, emergent magnetic monopoles have been observed to roam freely (generating magnetic current) in geometrically frustrated magnets known as spin ice. However, this is realized only by considering extreme physical conditions as a single crystal of spin ice has to be cooled to a temperature of $0.36 K$. Candidates to overcome this difficulty are artificial analogues of spin ice crystals, the so-called artificial spin ices. Here we show that, by tuning geometrical frustration down, a peculiar type of these artificial systems is an excellent candidate. We produce this material and experimentally observe the emergent monopoles; then, we calculate the effects of external magnetic fields, illustrating how to generate controlled magnetic currents. This potential nano-device for use in magnetronics can be practical even at room temperature and the relevant parameters (such as magnetic charge strength etc) for developing this technology can be tuned at will.



قيم البحث

اقرأ أيضاً

Magnetization dynamics in an artificial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich s pectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets. Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.
Magnetic analogue of an isolated free electric charge, i.e., a magnet with a single north or south pole, is a long sought-after particle which remains elusive so far. In magnetically frustrated pyrochlore solids, a classical analogue of monopole was observed as a result of excitation of spin ice vertices. Direct visualization of such excitations were proposed and later confirmed in analogous artificial spin ice (ASI) systems of square as well as Kagome geometries. However, such charged vertices are randomly created as they are thermally driven and are always associated with corresponding emergent antimonopoles of equal and opposite charges connected by observable strings. Here, we demonstrate a controlled stabilisation of a robust isolated emergent monopole state in individual square ASI vertices by application of an external magnetic field. The excitation conserves the magnetic charge without the involvement of a corresponding antimonopole. Well supported by Monte Carlo simulations our experimental results enable, in absence of a true elemental magnetic monopole, creation of electron vortices and studying electrodynamics in presence of a monopole field in a solid state environment.
Geometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applicati ons in microelectronics, such as data storage, memory and logic. However, it is difficult to achieve extensive degeneracy, especially in a two-dimensional system. Here, we showcase in-situ controllable geometric frustration with massive degeneracy in a two-dimensional flux quantum system. We create this in a superconducting thin film placed underneath a reconfigurable artificial-spin-ice structure. The tunable magnetic charges in the artificial-spin-ice strongly interact with the flux quanta in the superconductor, enabling the switching between frustrated and crystallized flux quanta states. The different states have measurable effects on the superconducting critical current profile, which can be reconfigured by precise selection of the spin ice magnetic state through application of an external magnetic field. We demonstrate the applicability of these effects by realizing a reprogrammable flux quanta diode. The tailoring of the energy landscape of interacting particles using artificial-spin-ices provides a new paradigm for the design of geometric frustration, which allows us to control new functionalities in other material systems, such as magnetic skyrmions, electrons/holes in two-dimensional materials and topological insulators, as well as colloids in soft materials.
Strongly-interacting artificial spin systems are moving beyond mimicking naturally-occuring materials to find roles as versatile functional platforms, from reconfigurable magnonics to designer magnetic metamaterials. Typically artificial spin systems comprise nanomagnets with a single magnetisation texture: collinear macrospins or chiral vortices. By tuning nanoarray dimensions we achieve macrospin/vortex bistability and demonstrate a four-state metamaterial spin-system Artificial Spin-Vortex Ice (ASVI). ASVI is capable of adopting Ising-like macrospins with strong ice-like vertex interactions, in addition to weakly-coupled vortices with low stray dipolar-field. The enhanced bi-texture microstate space gives rise to emergent physical memory phenomena, with ratchet-like vortex training and history-dependent nonlinear training dynamics. We observe vortex-domain formation alongside MFM tip vortex-writing. Tip-written vortices dramatically alter local reversal and memory dynamics. Vortices and macrospins exhibit starkly-differing spin-wave spectra with analogue-style mode-amplitude control via vortex training and mode-frequency shifts of df = 3.8 GHz. We leverage spin-wave spectral fingerprinting for rapid, scaleable readout of vortex and macrospin populations over complex training-protocols with applicability for functional magnonics and physical memory.
Artificial spin ice offers the possibility to investigate a variety of dipolar orderings, spin frustrations and ground states. However, the most fascinating aspect is the realization that magnetic charge order can be established without spin order. W e have investigated magnetic dipoles arranged on a honeycomb lattice as a function of applied field, using magnetic force microscopy. For the easy direction with the field parallel to one of the three dipole sublattices we observe at coercivity a maximum of spin frustration and simultaneously a maximum of charge order of magnetic monopoles with alternating charges $pm$ 3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا