F-pure thresholds of homogeneous polynomials


الملخص بالإنكليزية

In this article, we investigate F-pure thresholds of polynomials that are homogeneous under some N-grading, and have an isolated singularity at the origin. We characterize these invariants in terms of the base p expansion of the corresponding log canonical threshold. As an application, we are able to make precise some bounds on the difference between F-pure and log canonical thresholds established by Mustac{t}u{a} and the fourth author. We also examine the set of primes for which the F-pure and log canonical threshold of a polynomial must differ. Moreover, we obtain results in special cases on the ACC conjecture for F-pure thresholds, and on the upper semi-continuity property for the F-pure threshold function.

تحميل البحث