ﻻ يوجد ملخص باللغة العربية
We perform the first fit to the anisotropic clustering of SDSS-III CMASS DR10 galaxies on scales of ~ 0.8 - 32 Mpc/h. A standard halo occupation distribution model evaluated near the best fit Planck LCDM cosmology provides a good fit to the observed anisotropic clustering, and implies a normalization for the peculiar velocity field of M ~ 2 x 10^13 Msun/h halos of f*sigma8(z=0.57) = 0.450 +/- 0.011. Since this constraint includes both quasi-linear and non-linear scales, it should severely constrain modified gravity models that enhance pairwise infall velocities on these scales. Though model dependent, our measurement represents a factor of 2.5 improvement in precision over the analysis of DR11 on large scales, f*sigma8(z=0.57) = 0.447 +/- 0.028, and is the tightest single constraint on the growth rate of cosmic structure to date. Our measurement is consistent with the Planck LCDM prediction of 0.480 +/- 0.010 at the ~1.9 sigma level. Assuming a halo mass function evaluated at the best fit Planck cosmology, we also find that 10% of CMASS galaxies are satellites in halos of mass M ~ 6 x 10^13 Msun/h. While none of our tests and model generalizations indicate systematic errors due to an insufficiently detailed model of the galaxy-halo connection, the precision of these first results warrant further investigation into the modeling uncertainties and degeneracies with cosmological parameters.
General relativistic effects have long been predicted to subtly influence the observed large-scale structure of the universe. The current generation of galaxy redshift surveys have reached a size where detection of such effects is becoming feasible.
With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e.
We measure the small-scale clustering of the Data Release 16 extended Baryon Oscillation Spectroscopic Survey Luminous Red Galaxy sample, corrected for fibre-collisions using Pairwise Inverse Probability weights, which give unbiased clustering measur
We perform a tomographic analysis of structure growth and expansion rate from the anisotropic galaxy clustering of the combined sample of Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12, which covers the redshift range of $0.2<z<0.75$.
We study the clustering of galaxies, as a function of their colour, from Data Release Ten (DR10) of the SDSS-III Baryon Oscillation Spectroscopic Survey. We select 122,967 galaxies with 0.43 < z < 0.7 into a Blue sample and 131,969 into a Red sample