ترغب بنشر مسار تعليمي؟ اضغط هنا

A distant radio mini-halo in the Phoenix galaxy cluster

178   0   0.0 ( 0 )
 نشر من قبل Reinout van Weeren
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z=0.596) with the GMRT at 610 MHz. The diffuse emission extends over a region of at least 400-500 kpc and surrounds the central radio source of the Brightest Cluster Galaxy, but does not appear to be directly associated with it. We classify the diffuse emission as a radio mini-halo, making it the currently most distant mini-halo known. Radio mini-halos have been explained by synchrotron emitting particles re-accelerated via turbulence, possibly induced by gas sloshing generated from a minor merger event. Chandra observations show a non-concentric X-ray surface brightness distribution, which is consistent with this sloshing interpretation. The mini-halo has a flux density of $17pm5$ mJy, resulting in a 1.4 GHz radio power of ($10.4pm3.5) times 10^{24}$ W Hz$^{-1}$. The combined cluster emission, which includes the central compact radio source, is also detected in a shallow GMRT 156 MHz observation and together with the 610 MHz data we compute a spectral index of $-0.84pm0.12$ for the overall cluster radio emission. Given that mini-halos typically have steeper radio spectra than cluster radio galaxies, this spectral index should be taken as an upper limit for the mini-halo.



قيم البحث

اقرأ أيضاً

Diffuse radio sources associated with the intra-cluster medium are direct probes of the cosmic ray electrons and magnetic fields. We report the discovery of a diffuse radio source in the galaxy cluster RXCJ0232.2-4420 (SPT-CL J0232-4421, $z=0.2836$) using 606 MHz observations with the Giant Metrewave Radio Telescope. The diffuse radio source surrounds the Brightest Cluster Galaxy in the cluster like typical radio mini-halos. However the total extent of it is $550times800$ kpc$^{2}$, which is larger than mini-halos and similar to that of radio halos. The BCG itself is also a radio source with a marginally resolved core at $7$ (30 kpc) resolution. We measure the 606 MHz flux density of the RH to be $52pm5$ mJy. Assuming a spectral index of 1.3, the 1.4 GHz radio power is $4.5 times 10^{24}$ W Hz$^{-1}$. The dynamical state of the cluster has been inferred to be relaxed and also as complex depending on the classification methods based on the morphology of the X-ray surface brightness. This system thus seems to be in the transition phase from a mini-halo to a radio halo.
(Abridged) The relaxed cool-core Phoenix cluster (SPT-CL J2344-4243) features an extremely strong cooling flow, as well as a mini-halo. Strong star-formation in the brightest cluster galaxy indicates that AGN feedback has been unable to inhibit this cooling flow. We have studied the strong cooling flow in the Phoenix cluster by determining the radio properties of the AGN and its lobes. In addition, we use spatially resolved observations to investigate the origin of the mini-halo. We present new Very Large Array 1-12 GHz observations of the Phoenix cluster which resolve the AGN and its lobes in all four frequency bands, and resolve the mini-halo in L- and S-band. Using our L-band observations, we measure the total flux density of the radio lobes at 1.5 GHz to be $7.6pm0.8$ mJy, and the flux density of the mini-halo to be $8.5pm0.9$ mJy. Using L- and X-band images, we produce the first spectral index maps of the lobes from the AGN and measure the spectral indices of the northern and southern lobes to be $-1.35pm0.07$ and $-1.30pm0.12$, respectively. Similarly, using L- and S-band data, we map the spectral index of the mini-halo, and obtain an integrated spectral index of $alpha=-0.95 pm 0.10$. We find that the mini-halo is most likely formed by turbulent re-acceleration powered by sloshing in the cool core due to a recent merger. In addition, we find that the feedback in the Phoenix cluster is consistent with the picture that stronger cooling flows are to be expected for massive clusters like the Phoenix cluster, as these may feature an underweight supermassive black hole due to their merging history. Strong time variability of the AGN on Myr-timescales may help explain the disconnection between the radio and the X-ray properties of the system. Finally, a small amount of jet precession likely contributes to the relatively low ICM re-heating efficiency of the mechanical feedback.
74 - T. Venturi 2017
We report on a spectral study at radio frequencies of the giant radio halo in A2142 (z=0.0909), which we performed to explore its nature and origin. A2142 is not a major merger and the presence of a giant radio halo is somewhat surprising. We perform ed deep radio observations with the GMRT at 608 MHz, 322 MHz, and 234 MHz and with the VLA in the 1-2 GHz band. We obtained high-quality images at all frequencies in a wide range of resolutions. The radio halo is well detected at all frequencies and extends out to the most distant cold front in A2142. We studied the spectral index in two regions: the central part of the halo and a second region in the direction of the most distant south-eastern cold front, selected to follow the bright part of the halo and X-ray emission. We complemented our observations with a preliminary LOFAR image at 118 MHz and with the re-analysis of archival VLA data at 1.4 GHz. The two components of the radio halo show different observational properties. The central brightest part has higher surface brightess and a spectrum whose steepness is similar to those of the known radio halos, i.e. $alpha^{rm 1.78~GHz}_{rm 118~MHz}=1.33pm 0.08$. The ridge, which fades into the larger scale emission, is broader in size and has considerably lower surface brightess and a moderately steeper spectrum, i.e. $alpha^{rm 1.78~GHz}_{rm 118~MHz}sim 1.5$. We propose that the brightest part of the radio halo is powered by the central sloshing in A2142, similar to what has been suggested for mini-halos, or by secondary electrons generated by hadronic collisions in the ICM. On the other hand, the steeper ridge may probe particle re-acceleration by turbulence generated either by stirring the gas and magnetic fields on a larger scale or by less energetic mechanisms, such as continuous infall of galaxy groups or an off-axis merger.
We present a low-frequency view of the Perseus cluster with new observations from the Karl G. Jansky Very Large Array (JVLA) at 230-470 MHz. The data reveal a multitude of new structures associated with the mini-halo. The mini-halo seems to be influe nced both by the AGN activity as well as by the sloshing motion of the cool core clusters gas. In addition, it has a filamentary structure similar to that seen in radio relics found in merging clusters. We present a detailed description of the data reduction and imaging process of the dataset. The depth and resolution of the observations allow us to conduct for the first time a detailed comparison of the mini-halo structure with the X-ray structure as seen in the Chandra X-ray images. The resulting image shows very clearly that the mini-halo emission is mostly contained behind the cold fronts, similar to that predicted by simulations of gas sloshing in galaxy clusters. However, due to the proximity of the Perseus cluster, as well as the quality of the data at low radio frequencies and at X-ray wavelengths, we also find evidence of fine structure. This structure includes several radial radio filaments extending in different directions, a concave radio structure associated with the southern X-ray bay and sharp edges that correlate with X-ray edges. Mini-halos are therefore not simply diffuse, uniform radio sources, but are rather filled with a rich variety of complex structures. These results illustrate the high-quality images that can be obtained with the new JVLA at low radio-frequencies, as well as the necessity to obtain deeper, higher-fidelity radio images of mini-halos and halos in clusters to further understand their origin.
125 - E. Daddi , S. Jin , V. Strazzullo 2017
We show that the most distant X-ray detected cluster known to date, ClJ1001 at z=2.506, hosts a strong overdensity of radio sources. Six of them are individually detected (within 10) in deep 0.75 resolution VLA 3GHz imaging, with S(3GHz)>8uJy. Of the six, AGN likely affects the radio emission in two galaxies while star formation is the dominant source powering the remaining four. We searched for cluster candidates over the full COSMOS 2-square degree field using radio-detected 3GHz sources and looking for peaks in Sigma5 density maps. ClJ1001 is the strongest overdensity by far with >10sigma, with a simple z_phot>1.5 preselection. A cruder photometric rejection of z<1 radio foregrounds leaves ClJ1001 as the second strongest overdensity, while even using all radio sources ClJ1001 remains among the four strongest projected overdensities. We conclude that there are great prospects for future, deep and wide-area radio surveys to discover large samples of the first generation of forming galaxy clusters. In these remarkable structures widespread star formation and AGN activity of massive galaxy cluster members, residing within the inner cluster core, will ultimately lead to radio continuum as one of the most effective means for their identification, with detection rates expected in the ballpark of 0.1-1 per square degree at z>2.5. Samples of hundreds such high-redshift clusters could potentially constrain cosmological parameters and test cluster and galaxy formation models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا