ﻻ يوجد ملخص باللغة العربية
(abridged) Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on our earlier estimate of the Galactic contribution, we set out to estimate the extragalactic contributions. We discuss the problems involved; in particular, we point out that taking the difference between the observed values and the Galactic foreground reconstruction is not a good estimate for the extragalactic contributions. We point out a degeneracy between the contributions to the observed values due to extragalactic magnetic fields and observational noise and comment on the dangers of over-interpreting an estimate without taking into account its uncertainty information. To overcome these difficulties, we develop an extended reconstruction algorithm based on the assumption that the observational uncertainties are accurately described for a subset of the data, which can overcome the degeneracy with the extragalactic contributions. We present a probabilistic derivation of the algorithm and demonstrate its performance using a simulation, yielding a high quality reconstruction of the Galactic Faraday rotation foreground, a precise estimate of the typical extragalactic contribution, and a well-defined probabilistic description of the extragalactic contribution for each data point. We then apply this reconstruction technique to a catalog of Faraday rotation observations. We vary our assumptions about the data, showing that the dispersion of extragalactic contributions to observed Faraday depths is most likely lower than 7 rad/m^2, in agreement with earlier results, and that the extragalactic contribution to an individual data point is poorly constrained by the data in most cases.
Using commissioning data from the first year of operation of the Canadian Hydrogen Intensity Mapping Experiments (CHIME) Pulsar backend system, we conduct a systematic analysis of the Faraday Rotation Measure (RM) of the northern hemisphere pulsars d
We present a catalog of Faraday rotation measures (RMs) and redshifts for 4003 extragalactic radio sources detected at 1.4 GHz, derived by identifying optical counterparts and spectroscopic redshifts for linearly polarized radio sources from the NRAO
(abridged) We run a Faraday structure determination data challenge to benchmark the currently available algorithms including Faraday synthesis (previously called RM synthesis in the literature), wavelet, compressive sampling and $QU$-fitting. The fre
We present a first application of the recently proposed LITMUS test for magnetic helicity, as well as a thorough study of its applicability under different circumstances. In order to apply this test to the galactic magnetic field, the newly developed
Faraday rotation measures (RMs) of extragalactic radio sources provide information on line-of-sight magnetic fields, including contributions from our Galaxy, source environments, and the intergalactic medium (IGM). Looking at differences in RMs, $Del