ترغب بنشر مسار تعليمي؟ اضغط هنا

The 2011 Outburst of Recurrent Nova T Pyx: X-ray Observations Expose the White Dwarf Mass and Ejection Dynamics

632   0   0.0 ( 0 )
 نشر من قبل Laura Chomiuk
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign. We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (~45 eV) and implies that the white dwarf in T Pyx is significantly below the Chandrasekhar mass (~1 M_sun). The late turn-on time of the super-soft component yields a large nova ejecta mass (>~10^-5 M_sun), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a ~1 keV thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.



قيم البحث

اقرأ أيضاً

Despite being the prototype of its class, T Pyx is arguably the most unusual and poorly understood recurrent nova. Here, we use radio observations from the Karl G. Jansky Very Large Array to trace the evolution of the ejecta over the course of the 20 11 outburst of T Pyx. The radio emission is broadly consistent with thermal emission from the nova ejecta. However, the radio flux began rising surprisingly late in the outburst, indicating that the bulk of the radio-emitting material was either very cold, or expanding very slowly, for the first ~50 days of the outburst. Considering a plausible range of volume filling factors and geometries for the ejecta, we find that the high peak flux densities of the radio emission require a massive ejection of 1-30 x 10^{-5} solar masses. This ejecta mass is much higher than the values normally associated with recurrent novae, and is more consistent with a nova on a white dwarf well below the Chandrasekhar limit.
237 - Olivier Chesneau 2011
We report on near-IR interferometric observations of the outburst of the recurrent nova T Pyx. We obtained near-IR observations of T Pyx at dates ranging from t=2.37d to t=48.2d after the outburst, with the CLASSIC recombiner, located at the CHARA ar ray, and with the PIONIER and AMBER recombiners, located at the VLTI array. These data are supplemented with near-IR photometry and spectra obtained at Mount Abu, India. Slow expansion velocities were measured (<300km/s) before t=20d (assuming D=3.5kpc). From t=28d on, the AMBER and PIONIER continuum visibilities (K and H band, respectively) are best simulated with a two component model consisting of an unresolved source plus an extended source whose expansion velocity onto the sky plane is lower than 700km/s. The expansion of the Brgamma line forming region, as inferred at t=28d and t=35d is slightly larger, implying velocities in the range 500-800km/s, still strikingly lower than the velocities of 1300-1600km/s inferred from the Doppler width of the line. Moreover, a remarkable pattern was observed in the Brgamma differential phases. A semi-quantitative model using a bipolar flow with a contrast of 2 between the pole and equator velocities, an inclination of i=15^{circ} and a position angle P.A.=110^{circ} provides a good match to the AMBER observables (spectra, differential visibilities and phases). At t=48d, a PIONIER dataset confirms the two component nature of the H band emission, consisting of an unresolved stellar source and an extended region whose appearance is circular and symmetric within error bars.These observations are most simply interpreted within the frame of a bipolar model, oriented nearly face-on. This finding has profound implications for the interpretation of past, current and future observations of the expanding nebula.
Two long AstroSat Soft X-ray Telescope observations were taken of the third recorded outburst of the Symbiotic Recurrent Nova, V3890 Sgr. The first observing run, 8.1-9.9 days after the outburst, initially showed a stable intensity level with a hard X-ray spectrum that we attribute to shocks between the nova ejecta and the pre-existing stellar companion. On day 8.57, the first, weak, signs appeared of Super Soft Source (SSS) emission powered by residual burning on the surface of the White Dwarf. The SSS emission was observed to be highly variable on time scales of hours. After day 8.9, the SSS component was more stable and brighter. In the second observing run, on days 15.9-19.6 after the outburst, the SSS component was even brighter but still highly variable. The SSS emission was observed to fade significantly during days 16.8-17.8 followed by re-brightening. Meanwhile the shock component was stable leading to increase in hardness ratio during the period of fading. AstroSat and XMM-Newton observations have been used to study the spectral properties of V3890 Sgr to draw quantitative conclusions even if their drawback is model-dependence. We used the xspec to fit spectral models of plasma emission, and the best fits are consistent with the elemental abundances being lower during the second observing run compared to the first for spectra >1 keV. The SSS emission is well fit by non-local thermal equilibrium model atmosphere used for white dwarfs. The resulting spectral parameters, however, are subject to systematic uncertainties such as completeness of atomic data.
133 - A. Evans 2012
We present Spitzer Space Telescope and Herschel Space Observatory infrared observations of the recurrent nova T Pyx during its 2011 eruption, complemented by ground-base optical-infrared photometry. We find that the eruption has heated dust in the pr e-existing nebulosity associated with T Pyx. This is most likely interstellar dust swept up by T Pyx - either during previous eruptions or by a wind - rather than the accumulation of dust produced during eruptions.
116 - N. M. H. Vaytet 2011
Following the Swift X-ray observations of the 2006 outburst of the recurrent nova RS Ophiuchi, we developed hydrodynamical models of mass ejection from which the forward shock velocities were used to estimate the ejecta mass and velocity. In order to further constrain our model parameters, here we present synthetic X-ray spectra from our hydrodynamical calculations which we compare to the Swift data. An extensive set of simulations was carried out to find a model which best fits the spectra up to 100 days after outburst. We find a good fit at high energies but require additional absorption to match the low energy emission. We estimate the ejecta mass to be in the range (2-5) x 10^{-7} solar masses and the ejection velocity to be greater than 6000 km/s (and probably closer to 10,000 km/s). We also find that estimates of shock velocity derived from gas temperatures via standard model fits to the X-ray spectra are much lower than the true shock velocities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا