The Intrinsic Quasar Luminosity Function: Accounting for Accretion Disk Anisotropy


الملخص بالإنكليزية

Quasar luminosity functions are a fundamental probe of the growth and evolution of supermassive black holes. Measuring the intrinsic luminosity function is difficult in practice, due to a multitude of observational and systematic effects. As sample sizes increase and measurement errors drop, characterizing the systematic effects is becoming more important. It is well known that the continuum emission from the accretion disk of quasars is anisotropic --- in part due to its disk-like structure --- but current luminosity function calculations effectively assume isotropy over the range of unobscured lines of sight. Here, we provide the first steps in characterizing the effect of random quasar orientations and simple models of anisotropy on observed luminosity functions. We find that the effect of orientation is not insignificant and exceeds other potential corrections such as those from gravitational lensing of foreground structures. We argue that current observational constraints may overestimate the intrinsic luminosity function by as much as a factor of ~2 on the bright end. This has implications for models of quasars and their role in the Universe, such as quasars contribution to cosmological backgrounds.

تحميل البحث