ترغب بنشر مسار تعليمي؟ اضغط هنا

Group-velocity slowdown in a double quantum-dot molecule

122   0   0.0 ( 0 )
 نشر من قبل Hans Christian Schneider
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The slowdown of optical pulses due to quantum-coherence effects is investigated theoretically for an active material consisting of InGaAs-based double quantum-dot molecules. These are designed to exhibit a long lived coherence between two electronic levels, which is an essential part of a quantum coherence scheme that makes use of electromagnetically-induced transparency effects to achieve group velocity slowdown. We apply a many-particle approach based on realistic semiconductor parameters that allows us to calculate the quantum-dot material dynamics including microscopic carrier scattering and polarisation dephasing dynamics. The group-velocity reduction is characterized in the frequency domain by a quasi-equilibrium slow-down factor and in the time domain by the probe-pulse slowdown obtained from a calculation of the spatio-temporal material dynamics coupled to the propagating optical field. The group-velocity slowdown in the quantum-dot molecule is shown to be substantially higher than what is achievable from similar transitions in typical InGaAs-based single quantum dots. The dependences of slowdown and shape of the propagating probe pulses on lattice temperature and drive intensities are investigated.



قيم البحث

اقرأ أيضاً

Electron tunneling through a two stage Kondo system constituted by a double quantum-dot molecule side coupled to a quantum wire, under the effect of a finite external potential is studied. We found that $I$-$V$ characteristic shows a negative differe ntial conductance region induced by the electronic correlation. This phenomenon is a consequence of the properties of the two stage Kondo regime under the effect of an external applied potential that takes the system out of equilibrium. The problem is solved using the mean-field finite-$U$ slave-boson formalism.
We report a successful measurement of the magnetic field-induced spin singlet-triplet transition in silicon-based coupled dot systems. Our specific experimental scheme incorporates a lateral gate-controlled Coulomb-blockaded structure in Si to meet t he proposed scheme of Loss and DiVincenzo [1], and a non-equilibrium single-electron tunneling technique to probe the fine energy splitting between the spin singlet and triplet, which varies as a function of applying magnetic fields and interdot coupling constant. Our results, exhibiting the singlet-triplet crossing at a magnetic field for various interdot coupling constants, are in agreement with the theoretical predictions, and give the first experimental demonstration of the possible spin swapping occurring in the coupled double dot systems with magnetic field. *Electronic address: [email protected] [1] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
We demonstrate the Josephson effect in a serial double quantum dot defined in a nanowire with epitaxial superconducting leads. The supercurrent stability diagram adopts a honeycomb pattern with electron-hole and left-right reflection symmetry. We obs erve sharp discontinuities in the magnitude of the critical current, $I_c$, as a function of dot occupation, related to doublet to singlet ground state transitions. Detuning of the energy levels offers a tuning knob for $I_c$, which attains a maximum at zero detuning. The consistency between experiment and theory indicates that our device is a faithful realization of the two-impurity Anderson model.
294 - H.W.Liu , T.Fujisawa , H.Inokawa 2008
We report electron transport measurements of a silicon double dot formed in multi-gated metal-oxide-semiconductor structures with a 15-nm-thick silicon-on-insulator layer. Tunable tunnel coupling enables us to observe an excitation spectrum in weakly coupled dots and an energy level anticrossing in strongly coupled ones. Such a quantum dot molecule with both charge and energy quantization provides the essential prerequisite for future implementation of silicon-based quantum computations.
A most fundamental and longstanding goal in spintronics is to electrically tune highly efficient spin injectors and detectors, preferably compatible with nanoscale electronics. Here, we demonstrate all these points using semiconductor quantum dots (Q Ds), individually spin-polarized by ferromagnetic split-gates (FSGs). As a proof of principle, we fabricated a double QD spin valve consisting of two weakly coupled semiconducting QDs in an InAs nanowire (NW), each with independent FSGs that can be magnetized in parallel or anti-parallel. In tunneling magnetoresistance (TMR) experiments at zero external magnetic field, we find a strongly reduced spin valve conductance for the two anti-parallel configurations, with a single QD polarization of $sim 27%$. The TMR can be significantly improved by a small external field and optimized gate voltages, which results in a continuously electrically tunable TMR between $+80%$ and $-90%$. A simple model quantitatively reproduces all our findings, suggesting a gate tunable QD polarization of $pm 80%$. Such versatile spin-polarized QDs are suitable for various applications, for example in spin projection and correlation experiments in a large variety of nanoelectronics experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا