ﻻ يوجد ملخص باللغة العربية
We report on the observation of strong backscattering of charge carriers in the quantum Hall regime of polycrystalline graphene grown by chemical vapor deposition, which alters the accuracy of the Hall resistance quantization. The temperature and magnetic field dependence of the longitudinal conductivity exhibits unexpectedly smooth power law behaviors, which are incompatible with a description in terms of variable range hopping or thermal activation, but rather suggest the existence of extended or poorly localized states at energies between Landau levels. Such states could be caused by the high density of line defects (grain boundaries and wrinkles) that cross the Hall bars, as revealed by structural characterizations. Numerical calculations confirm that quasi-one-dimensional extended non-chiral states can form along such line defects and short-circuit the Hall bar chiral edge states.
We report high room-temperature mobility in single layer graphene grown by Chemical Vapor Deposition (CVD) after wet transfer on SiO$_2$ and hexagonal boron nitride (hBN) encapsulation. By removing contaminations trapped at the interfaces between sin
Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within $10^{-9}$ in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required ac
We examine the quantum Hall effect in bilayer graphene grown on Cu substrates by chemical vapor deposition. Spatially resolved Raman spectroscopy suggests a mixture of Bernal (A-B) stacked and rotationally faulted (twisted) domains. Magnetotransport
The technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device applications. In order to improve the electrical properties of CVD graphene grown on copper (Cu
We characterize nanostructures of Bi2Se3 that are grown via metalorganic chemical vapor deposition using the precursors diethyl selenium and trimethyl bismuth. By adjusting growth parameters, we obtain either single-crystalline ribbons up to 10 micro