ترغب بنشر مسار تعليمي؟ اضغط هنا

Reactor mixing angle from hybrid neutrino masses

257   0   0.0 ( 0 )
 نشر من قبل Ivo de Medeiros Varzielas
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In terms of its eigenvector decomposition, the neutrino mass matrix (in the basis where the charged lepton mass matrix is diagonal) can be understood as originating from a tribimaximal dominant structure with small deviations, as demanded by data. If neutrino masses originate from at least two different mechanisms, referred to as hybrid neutrino masses, the experimentally observed structure naturally emerges provided one mechanism accounts for the dominant tribimaximal structure while the other is responsible for the deviations. We demonstrate the feasibility of this picture in a fairly model-independent way by using lepton-number-violating effective operators, whose structure we assume becomes dictated by an underlying $A_4$ flavor symmetry. We show that if a second mechanism is at work, the requirement of generating a reactor angle within its experimental range always fixes the solar and atmospheric angles in agreement with data, in contrast to the case where the deviations are induced by next-to-leading order effective operators. We prove this idea is viable by constructing an $A_4$-based ultraviolet completion, where the dominant tribimaximal structure arises from the type-I seesaw while the subleading contribution is determined by either type-II or type-III seesaw driven by a non-trivial $A_4$ singlet (minimal hybrid model). After finding general criteria, we identify all the $mathbb{Z}_N$ symmetries capable of producing such $A_4$-based minimal hybrid models.



قيم البحث

اقرأ أيضاً

144 - H. Fritzsch 2009
We discuss first the flavor mixing of the quarks, using the texture zero mass matrices. Then we study a similar model for the mass matrices of the leptons. We are able to relate the mass eigenvalues of the charged leptons and of the neutrinos to the mixing angles and can predict the masses of the neutrinos. We find a normal hierarchy - the masses are 0.004 eV, 0.01 eV and 0.05 eV. The atmospheric mixing angle is given by the mass ratios of the charged leptons and the neutrinos. we find about 40 degrees, consistent with the experiments. The mixing element, connecting the first neutrino wit the electron, is predicted to be 0.05. This prediction can soon be checked by the Daya Bay experiment.
We discuss a neutrino mass model based on the S4 discrete symmetry where the symmetry breaking is triggered by the boundary conditions of the bulk right-handed neutrino in the fifth spacial dimension. While the symmetry restricts bare mass parameters to flavor-diagonal forms, the viable mixing angles emerge from the wave functions of the Kaluza-Klein modes which carry symmetry breaking effect. The magnitudes of the lepton mixing angles, especially the reactor angle is related to the neutrino mass patterns and the model will be tested in future neutrino experiments, e.g., an early (late) discovery of the reactor angle favors the normal (inverted) hierarchy. The size of extra dimension has a connection to the possible mass spectrum; a small (large) volume corresponds to the normal (inverted) mass hierarchy.
203 - Harald Fritzsch 2015
We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the mass es of the three neutrinos: $m_1$ $approx$ 0.003 eV - $m_2$ $approx$ 0.012 eV - $m_3$ $approx$ 0.048 eV.
153 - Harald Fritzsch 2015
We discuss mass matrices with four texture zeros for the quarks and leptons. The three mixing angles for the quarks and leptons are functions of the fermion masses. The results agree with the experimental data. The ratio of the masses of the first tw o neutrinos is given by the solar mixing angle. The neutrino masses are calculated: $m_1$ $approx$ 0.004 eV, $m_2$ $approx$ 0.010 eV, $m_3$ $approx$ 0.070 eV.
135 - H. Fritzsch 2009
We study a model for the mass matrices of the leptons. We are ablte to relate the mass eigenvalues of the charged leptons and of the neutrinos to the mxiing angles and can predict the masses of the neutrinos. We find a normal hierarchy -the masses ar e 0.004 eV, 0.01 eV and 0.05 eV. The atmospheric mixing angle is given by the mass ratios of the charged leptons and of the neutrinos. We find 38 degrees, consistent with the experiments. The mixing element, connecting the first neutrino with the electron, is found to be 0.05.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا