ﻻ يوجد ملخص باللغة العربية
Topological insulators (TIs) exhibit many exotic properties. In particular, a topological magneto-electric (TME) effect, quantized in units of the fine structure constant, exists in TIs. In this Letter, we study theoretically the scattering properties of electromagnetic waves by TI circular cylinders particularly in the Rayleigh scattering limit. Compared with ordinary dielectric cylinders, the scattering by TI cylinders shows many unusual features due to the TME effect. Two proposals are suggested to determine the TME effect of TIs simply based on measuring the electric-field components of scattered waves in the far field at one or two scattering angles. Our results could also offer a way to measure the fine structure constant.
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
Axion field induced topological magneto-electric response has attracted lots of attentions since it was first proposed by Qi et al. in 2008. Here we find a new type of anti-commutative magneto-electric response $beta^{xi}(omega)$, which can induce a
A key challenge in condensed matter research is the optimization of topological insulator (TI) compounds for the study and future application of their unique surface states. Truly insulating bulk states would allow the exploitation of predicted surfa
Granular conductors form an artificially engineered class of solid state materials wherein the microstructure can be tuned to mimic a wide range of otherwise inaccessible physical systems. At the same time, topological insulators (TIs) have become a
Quantum anomalous Hall effect (QAHE) has been experimentally observed in magnetically doped topological insulators. However, ultra-low temperature (usually below 300 mK), which is mainly attributed to inhomogeneous magnetic doping, becomes a daunting