ترغب بنشر مسار تعليمي؟ اضغط هنا

The two-point resistance of a cobweb with a superconducting boundary

647   0   0.0 ( 0 )
 نشر من قبل F. Y. Wu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of two-point resistance on an m x n cobweb network with a superconducting boundary, which is topologically equivalent to a geographic globe. We deduce a concise formula for the resistance between any two nodes on the globe using a method of direct summation pioneered by one of us [Z. Z. Tan, et al, J. Phys. A 46, 195202 (2013)]. This method contrasts the Laplacian matrix approach which is difficult to apply to the geometry of a globe. Our analysis gives the result directly as a single summation.



قيم البحث

اقرأ أيضاً

An m x n cobweb network consists of n radial lines emanating from a center and connected by $m$ concentric n-sided polygons. A conjecture of Tan, Zhou and Yang for the resistance from center to perimeter of the cobweb is proved by extending the metho d used by the above authors to derive formulae for m = 1, 2 and 3 and general n. The resistance of an m x (s+t+1) fan network from the apex to a point on the boundary distant s from the corner is also found.
354 - V. Popkov 2012
Different phases in open driven systems are governed by either shocks or rarefaction waves. A presence of an isolated umbilic point in bidirectional systems of interacting particles stabilizes an unusual large scale excitation, an umbilic shock (U-sh ock). We show that in open systems the U-shock governs a large portion of phase space, and drives a new discontinuous transition between the two rarefaction-controlled phases. This is in contrast with strictly hyperbolic case where such a transition is always continuous. Also, we describe another robust phase which takes place of the phase governed by the U-shock, if the umbilic point is not isolated.
We provide general formulae for the configurational exponents of an arbitrary polymer network connected to the surface of an arbitrary wedge of the two-dimensional plane, where the surface is allowed to assume a general mixture of boundary conditions on either side of the wedge. We report on a comprehensive study of a linear chain by exact enumeration, with various attachments of the walks ends to the surface, in wedges of angles $pi/2$ and $pi$, with general mixed boundary conditions.
Suppose that a $d$-dimensional domain is filled with a gas of (in general, interacting) diffusive particles with density $n_0$. A particle is absorbed whenever it reaches the domain boundary. Employing macroscopic fluctuation theory, we evaluate the probability ${mathcal P}$ that no particles are absorbed during a long time $T$. We argue that the most likely gas density profile, conditional on this event, is stationary throughout most of the time $T$. As a result, ${mathcal P}$ decays exponentially with $T$ for a whole class of interacting diffusive gases in any dimension. For $d=1$ the stationary gas density profile and ${mathcal P}$ can be found analytically. In higher dimensions we focus on the simple symmetric exclusion process (SSEP) and show that $-ln {mathcal P}simeq D_0TL^{d-2} ,s(n_0)$, where $D_0$ is the gas diffusivity, and $L$ is the linear size of the system. We calculate the rescaled action $s(n_0)$ for $d=1$, for rectangular domains in $d=2$, and for spherical domains. Near close packing of the SSEP $s(n_0)$ can be found analytically for domains of any shape and in any dimension.
439 - Xavier Leoncini 2010
The distribution engendered by successive splitting of one point vortex are considered. The process of splitting a vortex in three using a reverse three-point vortex collapse course is analysed in great details and shown to be dissipative. A simple p rocess of successive splitting is then defined and the resulting vorticity distribution and vortex populations are analysed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا