ﻻ يوجد ملخص باللغة العربية
In this paper, we have calculated parity nonconserving electric dipole transition amplitudes of the hyperfine components for the transitions between the ground and first excited states of $^{137}$Ba$^{+}$ and $^{87}$Sr$^{+}$ using sum-over-states technique. The results are presented to extract the constants associated with the nuclear spin dependent amplitudes from experimental measurements. The wavefunctions to calculate the most dominant part of the sums are constructed using highly correlated coupled-cluster theory based on the Dirac-Coulomb-Gaunt Hamiltonian.
The zero crossing of the dynamic differential scalar polarizability of the $S_{1/2}-D_{5/2}$ clock transition in $^{138}$Ba$^+$ has been determined to be $459.1614(28),$THz. Together with previously determined matrix elements and branching ratios, th
Measurement of the $^{138}$Ba$^+$ ${}^2S_{1/2} - {}^2D_{5/2}$ clock transition frequency and $D_{5/2}$ Lande $g_J$ factor are reported. The clock transition frequency $ u_{mathrm{Ba}^+}=170,126,432,449,333.31pm(0.39)_mathrm{stat}pm(0.29)_mathrm{sys},
Using recent high-precision measurements of electric dipole matrix elements of atomic cesium, we make an improved determination of the scalar ($alpha$) and vector ($beta$) polarizabilities of the cesium $6s ^2S_{1/2} rightarrow 7s ^2S_{1/2} $ trans
We observe a hyperfine anomaly in the measurement of the hyperfine splitting of the 6S_{1/2} excited level in rubidium. We perform two step spectroscopy using the 5S_{1/2}->5P_{1/2}->6S_{1/2} excitation sequence. We measure the splitting of the 6S1/2
Employing the relativistic coupled-cluster method, comparative studies of the parity non-conserving electric dipole amplitudes for the $7s ^2S_{1/2} rightarrow 6d ^2D_{5/2}$ transitions in $^{210}$Fr and $^{211}$Fr isotopes have been carried out. I