ﻻ يوجد ملخص باللغة العربية
Databases need to allocate and free blocks of storage on disk. Freed blocks introduce holes where no data is stored. Allocation systems attempt to reuse such deallocated regions in order to minimize the footprint on disk. If previously allocated blocks cannot be moved, the problem is called the memory allocation problem, which is known to have a logarithmic overhead in the footprint. This paper defines the storage reallocation problem, where previously allocated blocks can be moved, or reallocated, but at some cost. The algorithms presented here are cost oblivious, in that they work for a broad and reasonable class of cost functions, even when they do not know what the cost function is. The objective is to minimize the storage footprint, that is, the largest memory address containing an allocated object, while simultaneously minimizing the reallocation costs. This paper gives asymptotically optimal algorithms for storage reallocation, in which the storage footprint is at most (1+epsilon) times optimal, and the reallocation cost is at most (1/epsilon) times the original allocation cost, which is also optimal. The algorithms are cost oblivious as long as the allocation/reallocation cost function is subadditive.
We prove the existence of an oblivious routing scheme that is $mathrm{poly}(log n)$-competitive in terms of $(congestion + dilation)$, thus resolving a well-known question in oblivious routing. Concretely, consider an undirected network and a set o
A mesh is a graph that divides physical space into regularly-shaped regions. Meshes computations form the basis of many applications, e.g. finite-element methods, image rendering, and collision detection. In one important mesh primitive, called a mes
We present a streaming problem for which every adversarially-robust streaming algorithm must use polynomial space, while there exists a classical (oblivious) streaming algorithm that uses only polylogarithmic space. This is the first separation betwe
We prove an $Omega(d lg n/ (lglg n)^2)$ lower bound on the dynamic cell-probe complexity of statistically $mathit{oblivious}$ approximate-near-neighbor search ($mathsf{ANN}$) over the $d$-dimensional Hamming cube. For the natural setting of $d = Thet
Kernel methods are fundamental tools in machine learning that allow detection of non-linear dependencies between data without explicitly constructing feature vectors in high dimensional spaces. A major disadvantage of kernel methods is their poor sca