ﻻ يوجد ملخص باللغة العربية
We present polarisation properties at $1.4,$GHz of two separate extragalactic source populations: passive quiescent galaxies and luminous quasar-like galaxies. We use data from the {it Wide-Field Infrared Survey Explorer} data to determine the host galaxy population of the polarised extragalactic radio sources. The quiescent galaxies have higher percentage polarisation, smaller radio linear size, and $1.4,$GHz luminosity of $6times10^{21}<L_{rm 1.4}<7times10^{25},$W Hz$^{-1}$, while the quasar-like galaxies have smaller percentage polarisation, larger radio linear size at radio wavelengths, and a $1.4,$GHz luminosity of $9times10^{23}<L_{rm 1.4}<7times10^{28},$W Hz$^{-1}$, suggesting that the environment of the quasar-like galaxies is responsible for the lower percentage polarisation. Our results confirm previous studies that found an inverse correlation between percentage polarisation and total flux density at $1.4,$GHz. We suggest that the population change between the polarised extragalactic radio sources is the origin of this inverse correlation and suggest a cosmic evolution of the space density of quiescent galaxies. Finally, we find that the extragalactic contributions to the rotation measures (RMs) of the nearby passive galaxies and the distant quasar-like galaxies are different. After accounting for the RM contributions by cosmological large-scale structure and intervening Mg,{II} absorbers we show that the distribution of intrinsic RMs of the distant quasar-like sources is at most four times as wide as the RM distribution of the nearby quiescent galaxies, if the distribution of intrinsic RMs of the WISE-Star sources itself is at least several rad m$^{-2}$ wide.
We present the clustering properties of a complete sample of 968 radio sources detected at 1.4 GHz by the VLA-COSMOS survey with radio fluxes brighter than 0.15 mJy. 92% have redshift determinations from the Laigle et al. (2016) catalogue. Based on t
Giant radio galaxies (GRGs) are physically large radio sources that extend well beyond their host galaxy environment. Their polarization properties are affected by the poorly constrained magnetic field that permeates the intergalactic medium on Mpc s
As one of the prime contributors to the interstellar medium energy budget, magnetic fields naturally play a part in shaping the evolution of galaxies. Galactic magnetic fields can originate from strong primordial magnetic fields provided these latter
We compare the rest-frame ultraviolet and rest-frame optical morphologies of 2 < z < 3 star-forming galaxies in the GOODS-S field using Hubble Space Telescope WFC3 and ACS images from the CANDELS, GOODS, and ERS programs. We show that the distributio
We present a thorough characterization of a large sample of 183 extreme emission-line galaxies (EELGs) at redshift 0.11 < z < 0.93 selected from the 20k zCOSMOS Bright Survey because of their unusually large emission line equivalent widths. We use mu