ﻻ يوجد ملخص باللغة العربية
We present the results of the search for an astrophysical gravitational-wave stochastic background during the second Einstein Telescope mock data and science challenge. Assuming that the loudest sources can be detected individually and removed from the data, we show that the residual background can be recovered with an accuracy of $1%$ with the standard cross-correlation statistic, after correction of a systematic bias due to the non-isotropy of the sources.
The Einstein Telescope (ET), a proposed European ground-based gravitational-wave detector of third-generation, is an evolution of second-generation detectors such as Advanced LIGO, Advanced Virgo, and KAGRA which could be operating in the mid 2030s.
The purpose of this mock data and science challenge is to prepare the data analysis and science interpretation for the second generation of gravitational-wave experiments Advanced LIGO-Virgo in the search for a stochastic gravitational-wave backgroun
The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable bi
Strong lensing of gravitational waves is more likely for distant sources but predicted event rates are highly uncertain with many astrophysical origins proposed. Here we open a new avenue to estimate the event rate of strongly lensed systems by explo
Einstein Telescope (ET) is a possible third generation ground-based gravitational wave observatory for which a design study is currently being carried out. A brief (and non-exhaustive) overview is given of ETs projected capabilities regarding astroph