ترغب بنشر مسار تعليمي؟ اضغط هنا

IC 5181: An S0 Galaxy with Ionized Gas on Polar Orbits

119   0   0.0 ( 0 )
 نشر من قبل Alessandro Pizzella Prof.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nearby S0 galaxy IC 5181 is studied to address the origin of the ionized gas component that orbits the galaxy on polar orbit. We perform detailed photometric and spectroscopic observations measuring the surface brightness distribution of the stars (I-band), ionized gas of IC 5181 (H-alpha narrow band), the ionized-gas and stellar kinematics along both the major and minor axis, and the corresponding line strengths of the Lick indices. We conclude that the galaxy hosts a geometrically and kinematically decoupled component of ionized gas. It is elongated along the galaxy minor axis and in orthogonal rotation with respect to the galaxy disk. The result is suggesting that the gas component is not related to the stars having an external origin. The gas was accreted by IC 5181 on polar orbits from the surrounding environment.



قيم البحث

اقرأ أيضاً

Galaxies accrete material from the environment through acquisition and merging events. We study the nearby S0 galaxy IC 5181 to address the origin of the ionized-gas component orbiting the galaxy on polar orbit ionized gas of IC 5181 from broad and n arrow-band imaging. We measure the ionized-gas and stellar kinematics and the line strengths of the Lick indices of the stellar component along both the major and minor axis. The age, metallicity, and [alpha/Fe] enhancement of the stellar populations are derived using single stellar population models with variable element abundance ratios. The ionized-gas metallicity is obtained from the equivalent width of the emission lines. IC 5181 is a morphologically undisturbed S0 galaxy with a classical bulge made by old stars with super solar metallicity and overabundance. Stellar age and metallicity decrease in the disk region. The galaxy hosts a geometrically and kinematically decoupled component of ionized gas. It is elongated along the galaxy minor axis and in orthogonal rotation with respect to the galaxy disk. We interpret the kinematical decoupling as suggestive of a component of gas, which is not related to the stars and having an external origin. It was accreted by IC 5181 on polar orbits from the surrounding environment.
IC 1459 is an early-type galaxy (ETG) with a rapidly counter-rotating stellar core, and is the central galaxy in a gas-rich group of spirals. In this work, we investigate the abundant ionized gas in IC 1459 and present new stellar orbital models to c onnect its complex array of observed properties and build a more complete picture of its evolution. Using the Multi-Unit Spectroscopic Explorer (MUSE), the optical integral field unit (IFU) on the Very Large Telescope (VLT), we examine the gas and stellar properties of IC 1459 to decipher the origin and powering mechanism of the galaxys ionized gas. We detect ionized gas in a non-disk-like structure rotating in the opposite sense to the central stars. Using emission-line flux ratios and velocity dispersion from full-spectral fitting, we find two kinematically distinct regions of shocked emission-line gas in IC 1459, which we distinguished using narrow ($sigma$ $leq$ 155 km s$^{-1}$) and broad ($sigma$ $>$ 155 km s$^{-1}$) profiles. Our results imply that the emission-line gas in IC 1459 has a different origin than that of its counter-rotating stellar component. We propose that the ionized gas is from late-stage accretion of gas from the group environment, which occurred long after the formation of the central stellar component. We find that shock heating and AGN activity are both ionizing mechanisms in IC 1459 but that the dominant excitation mechanism is by post-asymptotic giant branch stars from its old stellar population.
We report the discovery of an infrared (IR)-bright dust-obscured galaxy (DOG) that shows a strong ionized-gas outflow but no significant molecular gas outflow. Based on detail analysis of their optical spectra, we found some peculiar IR-bright DOGs t hat show strong ionized-gas outflow ([OIII]$lambda$5007) from the central active galactic nucleus (AGN). For one of these DOGs (WISE J102905.90+050132.4) at $z_{rm spec} = 0.493$, we performed follow-up observations using ALMA to investigate their CO molecular gas properties. As a result, we successfully detected $^{12}$CO($J$=2-1) and $^{12}$CO($J$=4-3) lines, and the continuum of this DOG. The intensity-weighted velocity map of both lines shows a gradient, and the line profile of those CO lines is well-fitted by a single narrow Gaussian, meaning that this DOG has no sign of strong molecular gas outflow. The IR luminosity of this object is $log,(L_{rm IR}/L_{odot})$ = 12.40 that is classified as ultraluminous IR galaxy (ULIRG). We found that (i) the stellar mass and star-formation rate relation and (ii) the CO luminosity and far-IR luminosity relation are consistent with those of typical ULIRGs at similar redshifts. These results indicate that the molecular gas properties of this DOG are normal despite that its optical spectrum showing a powerful AGN outflow. We conclude that a powerful ionized-gas outflow caused by the AGN does not necessarily affect the cold interstellar medium in the host galaxy at least for this DOG.
The Antennae Galaxy (NGC 4038/39) is the closest major interacting galaxy system and therefore often taken as merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star-formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect HII regions and diffuse ionized gas to unprecedented depth. About 15% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60% in the central field and 10% in the southern region. We are able to show that the southern region contains a significantly different population of HII regions, showing fainter luminosities. By comparing HII region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each HII region against ionization-parameter sensitive emission line ratios. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that just from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking HII regions for the diffuse ionized gas in the Antennae.
We have obtained data for 41 star forming galaxies in the MUSE Atlas of Disks (MAD) survey with VLT/MUSE. These data allow us, at high resolution of a few 100 pc, to extract ionized gas kinematics ($V, sigma$) of the centers of nearby star forming ga laxies spanning 3 dex in stellar mass. This paper outlines the methodology for measuring the ionized gas kinematics, which we will use in subsequent papers of this survey. We also show how the maps can be used to study the kinematics of diffuse ionized gas for galaxies of various inclinations and masses. Using two different methods to identify the diffuse ionized gas, we measure rotation velocities of this gas for a subsample of 6 galaxies. We find that the diffuse ionized gas rotates on average slower than the star forming gas with lags of 0-10 km/s while also having higher velocity dispersion. The magnitude of these lags is on average 5 km/s lower than observed velocity lags between ionized and molecular gas. Using Jeans models to interpret the lags in rotation velocity and the increase in velocity dispersion we show that most of the diffuse ionized gas kinematics are consistent with its emission originating from a somewhat thicker layer than the star forming gas, with a scale height that is lower than that of the stellar disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا