ﻻ يوجد ملخص باللغة العربية
Aims: We offer a new, simpler picture of the local interstellar medium, made of a single continuous cloud enveloping the Sun. This new outlook enables the description of a diffuse cloud from within and brings to light some unexpected properties. Methods: We re-examine the kinematics and abundances of the local interstellar gas, as revealed by the published results for the ultraviolet absorption lines of MgII, FeII, and HI. Results: In contrast to previous representations, our new picture of the local interstellar medium consists of a single, monolithic cloud that surrounds the Sun in all directions and accounts for most of the matter present in the first 50 parsecs around the Sun. The cloud fills the space around us out to about 9 pc in most directions, although its boundary is very irregular with possibly a few extensions up to 20 pc. The cloud does not behave like a rigid body: gas within the cloud is being differentially decelerated in the direction of motion, and the cloud is expanding in directions perpendicular to this flow, much like a squashed balloon. Average HI volume densities inside the cloud vary between 0.03 and 0.1 cm-3 over different directions. Metals appear to be significantly depleted onto grains, and there is a steady increase in depletion from the rear of the cloud to the apex of motion. There is no evidence that changes in the ionizing radiation influence the apparent abundances. Secondary absorption components are detected in 60% of the sight lines. Almost all of them appear to be interior to the volume occupied by the main cloud. Half of the sight lines exhibit a secondary component moving at about -7.2 km/s with respect to the main component, which may be the signature of a shock propagating toward the clouds interior.
A key indicator of the galactic environment of the Sun is provided by the magnetic field in the interstellar medium (ISM), which influences the shape of the heliosphere. The direction of the nearby interstellar magnetic field (ISMF) is determined fro
We have investigated the interstellar reddening law of young open clusters within 3kpc from the Sun using optical, near-IR 2MASS, and Spitzer IRAC data. The total-to-selective extinction ratio Rv of 162 young open clusters (log t{age} <= 7.3) listed
We present a study of the HII region Sh2-205 and its environs, based on data obtained from the CGPS, 12CO observations, and MSX data. We find that Sh2-205 can be separated in three independent optical structures: SH 149.25-0.0, SH 148.83-0.67, and LB
Stars form in cold dense cores showing subsonic velocity dispersions. The parental molecular clouds display higher temperatures and supersonic velocity dispersions. The transition from core to cloud has been observed in velocity dispersion, but tempe
Two WSRT observations were performed and five archival VLA data were reduced in order to redetect the enigmatic radio transient GCRT J1745-3009. The source was not redetected. We were, however, able to extract important new information from the disco