ترغب بنشر مسار تعليمي؟ اضغط هنا

Freely quasiconformal maps and distance ratio metric

368   0   0.0 ( 0 )
 نشر من قبل Saminathan Ponnusamy Ph.D
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Suppose that $E$ and $E$ denote real Banach spaces with dimension at least $2$ and that $Dsubset E$ and $Dsubset E$ are domains. In this paper, we establish, in terms of the $j_D$ metric, a necessary and sufficient condition for the homeomorphism $f: E to E$ to be FQC. Moreover, we give, in terms of the $j_D$ metric, a sufficient condition for the homeomorphism $f: Dto D$ to be FQC. On the other hand, we show that this condition is not necessary.



قيم البحث

اقرأ أيضاً

189 - Slavko Simic , Matti Vuorinen , 2012
We study expansion/contraction properties of some common classes of mappings of the Euclidean space ${mathbb R}^n, nge 2,,$ with respect to the distance ratio metric. The first main case is the behavior of Mobius transformations of the unit ball in $ {mathbb R}^n$ onto itself. In the second main case we study the polynomials of the unit disk onto a subdomain of the complex plane. In both cases sharp Lipschitz constants are obtained.
We give study the Lipschitz continuity of Mobius transformations of a punctured disk onto another punctured disk with respect to the distance ratio metric.
Let E be a compact set in the plane, g be a K-quasiconformal map, and let 0<t<2. Then H^t (E) = 0 implies H^{t} (g E) = 0, for t=[2Kt]/[2+(K-1)t]. This is a refinement of a set of inequalities on the distortion of Hausdorff dimensions by quasicon formal maps proved by K. Astala in his celebrated paper on area distortion for quasiconformal maps and answers in the positive a Conjecture of K. Astala in op. cit.
In the present paper, we obtain a more general conditions for univalence of analytic functions in the open unit disk U. Also, we obtain a refinement to a quasiconformal extension criterion of the main result.
Deep metric learning, which learns discriminative features to process image clustering and retrieval tasks, has attracted extensive attention in recent years. A number of deep metric learning methods, which ensure that similar examples are mapped clo se to each other and dissimilar examples are mapped farther apart, have been proposed to construct effective structures for loss functions and have shown promising results. In this paper, different from the approaches on learning the loss structures, we propose a robust SNR distance metric based on Signal-to-Noise Ratio (SNR) for measuring the similarity of image pairs for deep metric learning. By exploring the properties of our SNR distance metric from the view of geometry space and statistical theory, we analyze the properties of our metric and show that it can preserve the semantic similarity between image pairs, which well justify its suitability for deep metric learning. Compared with Euclidean distance metric, our SNR distance metric can further jointly reduce the intra-class distances and enlarge the inter-class distances for learned features. Leveraging our SNR distance metric, we propose Deep SNR-based Metric Learning (DSML) to generate discriminative feature embeddings. By extensive experiments on three widely adopted benchmarks, including CARS196, CUB200-2011 and CIFAR10, our DSML has shown its superiority over other state-of-the-art methods. Additionally, we extend our SNR distance metric to deep hashing learning, and conduct experiments on two benchmarks, including CIFAR10 and NUS-WIDE, to demonstrate the effectiveness and generality of our SNR distance metric.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا