ﻻ يوجد ملخص باللغة العربية
The BICEP2 collaboration reports a detection of primordial cosmic microwave background (CMB) B-mode with a tensor-scalar ratio $r=0.20^{+0.07}_{-0.05}$ (68% C.L.). However, this result is in tension with the recent Planck limit, $r<0.11$ (95% C.L.), on constraining inflation models. In this Letter we consider an inflationary cosmology with a preceding nonsingular bounce which gives rise to observable signatures on primordial perturbations. One interesting phenomenon is that both the primordial scalar and tensor modes can have a step feature on their power spectra, which nicely cancels the tensor excess power on the CMB temperature power spectrum. By performing a global analysis, we obtain the 68% C.L. constraints on the parameters of the model from the Planck+WP and BICEP2 data together: the jump scale $log_{10}(k_{rm b}/{rm Mpc}^{-1})=-2.4pm0.2$ and the spectrum amplitude ratio of bounce-to-inflation $r_Bequiv P_{rm m} / A_{rm s} = 0.71pm0.09$. Our result reveals that the bounce inflation scenario can simultaneously explain the Planck and BICEP2 observations better than the standard $Lambda$CDM model, and can be verified by the future CMB polarization measurements.
Large field inflation models are favored by the recent BICEP2 that has detected gravitational wave modes generated during inflation. We study general large field inflation models for which the potential contains (constant) quadratic and quartic terms
Although the inflationary paradigm is the most widely accepted explanation for the current cosmological observations, it does not necessarily correspond to what actually happened in the early stages of our Universe. To decide on this issue, two paths
We present new constraints on the spectral index n_T of tensor fluctuations from the recent data obtained by the BICEP2 experiment. We found that the BICEP2 data alone slightly prefers a positive, blue, spectral index with n_T=1.36pm0.83 at 68 % c.l.
Based on the dynamics of single scalar field slow-roll inflation and the theory of reheating, we investigate the generalized natural inflationary (GNI) model. Concretely, we give constraints on the scalar spectral index $n_{s}$ and tensor-to scalar r
We study the effects of the Gauss-Bonnet term on the energy spectrum of inflationary gravitational waves. The models of inflation are classified into two types based on their predictions for the tensor power spectrum: red-tilted ($n_T<0$) and blue-ti