ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision luminosity measurement at ILC

110   0   0.0 ( 0 )
 نشر من قبل Ivanka Bozovic-Jelisavcic
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In these proceedings a novel approach to deal with the beam-induced effects in luminosity measurement is presented. Based on the relativistic kinematics of the collision frame of the Bhabha process, the beam-beam related uncertainties can be reduced to the permille level independently of a precision with which the beam parameters are known. Specific event selection combined with the corrective methods we introduce, leads to the systematic uncertainty from the beam-induced effects to be at a few permille level in the peak region above the 80% of the nominal centre-of-mass energies at ILC.



قيم البحث

اقرأ أيضاً

In this paper we describe a method of luminosity measurement at the future linear collider ILC that estimates and corrects for the impact of the dominant sources of systematic uncertainty originating from the beam-induced effects and the background f rom physics processes. Based on the relativistic kinematics of the collision frame of the Bhabha process, the beam-beam related uncertainty is reduced to a permille independently of the precision with which the beam parameters are known. With the specific event selection, different from the isolation cuts based on topology of the signal used at LEP, combined with the corrective methods we introduce, the overall systematic uncertainty in the peak region above 80% of the nominal center-of-mass energy meets the physics requirements to be at the few permille level at all ILC energies.
More than twenty institutes join the FCAL Collaboration in study of design of the very forward region of a detector for ILC and CLIC. Of particular importance is an accurate luminosity measurement to the level of 10-3, a requirement driven by the pot ential for precision physics at a future linear collider. In this paper, the method for luminosity measurement, requirements on luminometer and its integration in the forward region are presented. The impact of several effects contributing to the systematic uncertainty of luminosity measurement is given.
In the baseline design of the International Linear Collider (ILC) an undulator-based source is foreseen for the positron source in order to match the physics requirements. The recently chosen first energy stage with sqrt(s)=250 GeV requires high lumi nosity and imposes an effort for all positron source designs at high-energy colliders. In this paper we perform a simulation study and adopt the new technology of plasma lenses to capture the positrons generated by the undulator photons and to create the required high luminosity positron beam.
This paper describes an analysis performed at 250 GeV centre of mass energy for the reaction e+e- -> bbbar with the International Linear Collider, ILC, assuming an integrated luminosity of 500 fb-1. This measurement requires determining the b quark c harge, which can be optimally performed using the precise micro-vertex detector of the detector ILD and the charged kaon identification provided by the dE/dx information of its TPC. Given that the forward backward asymmetry is maximal for e-L (Left-handed electron polarisation), it has been necessary to develop a new method to correct for unavoidable angular migration due to b charge mis-measurements. This correction is based on the reconstructed events themselves without introducing external corrections which would induce large uncertainties. With polarized beams, one can separate the Z and photon vector and axial couplings to b quarks. The precision reached is at the few per mill level, and should allow to confirm/discard the deviation observed at LEP1 on the ZbRbR coupling. Model independent upper bounds on the tensor couplings, F2V and F2A, are derived using the shape of the angular distribution.
127 - V. Kovalenko 2012
In order to achieve the physics goals of future Linear Colliders, it is important that electron and positron beams are polarized. The baseline design at the International Linear Collider (ILC) foresees an e+ source based on helical undulator. Such a source provides high luminosity and polarizations. The positron source planned for ILC is based on a helical undulator system and can deliver a positron polarization of 60%. To ensure that no significant polarization is lost during the transport of the e- and e+ beams from the source to the interaction region, precise spin tracking has to be included in all transport elements which can contribute to a loss of polarization, i.e. the initial accelerating structures, the damping rings, the spin rotators, the main linac and the beam delivery system. In particular, the dynamics of the polarized positron beam is required to be investigated. In the talk recent results of positron spin tracking simulation at the source are presented. The positron yield and polarization are also discussed depending on the geometry of source elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا