ﻻ يوجد ملخص باللغة العربية
The galactic Cepheid S Muscae has recently been added to the important list of Cepheids linked to open clusters, in this case the sparse young cluster ASCC 69. Low-mass members of a young cluster are expected to have rapid rotation and X-ray activity, making X-ray emission an excellent way to discriminate them from old field stars. We have made an XMM-Newton observation centered on S Mus and identified (Table 1) a population of X-ray sources whose near-IR 2MASS counterparts lie at locations in the J, (J-K) color-magnitude diagram consistent with cluster membership at the distance of S Mus. Their median energy and X-ray luminosity are consistent with young cluster members as distinct from field stars. These strengthen the association of S Mus with the young cluster, making it a potential Leavitt Law (Period-Luminosity relation) calibrator.
We present high time-resolution multicolour optical observations of the quiescent X-ray transients GRS1124-684 (=GU Mus) and Cen X-4 (=V822 Cen) obtained with ULTRACAM. Superimposed on the secondary stars ellipsoidal modulation in both objects are la
V473 Lyr is a classical Cepheid which is unique in having substantial amplitude variations with a period of approximately 3.3 years, thought to be similar to the Blazhko variations in RR Lyrae stars. We obtained an {it XMM-Newton} observation of this
Galactic starburst clusters play a twin role in astrophysics, serving as laboratories for the study of stellar physics and also delineating the structure and recent star formation history of the Milky Way. In order to exploit these opportunities we h
We present simultaneous high-resolution optical spectroscopy and X-ray data of the X-ray binary system GR Mus (XB1254-690), obtained over a full range of orbital phases. The X-ray observations are used to re-establish the orbital ephemeris for this s
We present photometric and spectroscopic observations of the low mass X-ray binary GR Mus (XB 1254-690), and find strong evidence for the presence of a negative superhump with a period that is 2.4+/-0.3% shorter than the orbital. This provides furthe