We introduce an approximation for the pair distribution function of the inhomogeneous hard sphere fluid. Our approximation makes use of our recently published averaged pair distribution function at contact which has been shown to accurately reproduce the averaged pair distribution function at contact for inhomogeneous density distributions. This approach achieves greater computational efficiency than previous approaches by enabling the use of exclusively fixed-kernel convolutions and thus allowing an implementation using fast Fourier transforms. We compare results for our pair distribution approximation with two previously published works and Monte-Carlo simulation, showing favorable results.