ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Symmetry Fractionalization and Surface Topological Order

150   0   0.0 ( 0 )
 نشر من قبل Xie Chen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways , leading to a variety of symmetry enriched topological (SET) phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain `anomalous SETs can only occur on the surface of a 3D symmetry protected topological (SPT) phase. In this paper we describe a procedure for determining whether an SET of a discrete, onsite, unitary symmetry group $G$ is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions are captured by the fourth cohomology group $H^4( G, ,U(1))$, which also precisely labels the set of 3D SPT phases, with symmetry group $G$. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3d bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid ($U(1)_2$) topological order with a reduced symmetry $mathbb{Z}_2 times mathbb{Z}_2 subset SO(3)$, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3d SPT models realizing the anomalous surface terminations, and demonstrate that they are non-trivial by computing three loop braiding statistics. Possible extensions to anti-unitary symmetries are also discussed.



قيم البحث

اقرأ أيضاً

106 - Xie Chen 2016
Symmetry fractionalization describes the fascinating phenomena that excitations in a 2D topological system can transform under symmetry in a fractional way. For example in fractional quantum Hall systems, excitations can carry fractional charges whil e the electrons making up the system have charge one. An important question is to understand what symmetry fractionalization (SF) patterns are possible given different types of topological order and different symmetries. A lot of progress has been made recently in classifying the SF patterns, providing deep insight into the strongly correlated experimental signatures of systems like spin liquids and topological insulators. We review recent developments on this topic. First, it was shown that the SF patterns need to satisfy some simple consistency conditions. More interesting, it was realized that some seemingly consistent SF patterns are actually `anomalous, i.e. they cannot be realized in strictly 2D systems. We review various methods that have been developed to detect such anomalies. Applying such an understanding to 2D spin liquid allows one to enumerate all potentially realizable SF patterns and propose numerical and experimental probing methods to distinguish them. On the other hand, the anomalous SF patterns were shown to exist on the surface of 3D systems and reflect the nontrivial order in the 3D bulk. We review examples of this kind where the bulk states are topological insulators, topological superconductors, or have other symmetry protected topological orders.
In a phase with fractional excitations, topological properties are enriched in the presence of global symmetry. In particular, fractional excitations can transform under symmetry in a fractionalized manner, resulting in different Symmetry Enriched To pological (SET) phases. While a good deal is now understood in $2D$ regarding what symmetry fractionalization patterns are possible, the situation in $3D$ is much more open. A new feature in $3D$ is the existence of loop excitations, so to study $3D$ SET phases, first we need to understand how to properly describe the fractionalized action of symmetry on loops. Using a dimensional reduction procedure, we show that these loop excitations exist as the boundary between two $2D$ SET phases, and the symmetry action is characterized by the corresponding difference in SET orders. Moreover, similar to the $2D$ case, we find that some seemingly possible symmetry fractionalization patterns are actually anomalous and cannot be realized strictly in $3D$. We detect such anomalies using the flux fusion method we introduced previously in $2D$. To illustrate these ideas, we use the $3D$ $Z_2$ gauge theory with $Z_2$ global symmetry as an example, and enumerate and describe the corresponding SET phases. In particular, we find four non-anomalous SET phases and one anomalous SET phase, which we show can be realized as the surface of a $4D$ system with symmetry protected topological order.
The confluence of quantum mechanics and complexity, which leads to the emergence of rich, exotic states of matter, motivates the extension of our concepts of quantum ordering. The twin concepts of spontaneously broken symmetry, described in terms of a Landau order parameter, and of off-diagonal long-range order (ODLRO), are fundamental to our understanding of phases of matter. In electronic matter it has long been assumed that Landau order parameters involve an even number of electron fields, with integer spin and even charge, that are bosons. On the other hand, in low-dimensional magnetism, operators are known to fractionalize so that the excitations carry spin-1/2. Motivated by experiment, mean-field theory and computational results, we extend the concept of ODLRO into the time domain, proposing that in a broken symmetry state, quantum operators can fractionalize into half-integer order parameters. Using numerical renormalization group studies we show how such fractionalized order can be induced in quantum impurity models. We then conjecture that such order develops spontaneously in lattice quantum systems, due to positive feedback, leading to a new family of phases, manifested by a coincidence of broken symmetry and fractionalized excitations that can be detected by experiment.
The surfaces of three dimensional topological insulators (3D TIs) are generally described as Dirac metals, with a single Dirac cone. It was previously believed that a gapped surface implied breaking of either time reversal $mathcal T$ or U(1) charge conservation symmetry. Here we discuss a novel possibility in the presence of interactions, a surface phase that preserves all symmetries but is nevertheless gapped and insulating. Then the surface must develop topological order of a kind that cannot be realized in a 2D system with the same symmetries. We discuss candidate surface states - non-Abelian Quantum Hall states which, when realized in 2D, have $sigma_{xy}=1/2$ and hence break $mathcal T$ symmetry. However, by constructing an exactly soluble 3D lattice model, we show they can be realized as $mathcal T$ symmetric surface states. The corresponding 3D phases are confined, and have $theta=pi$ magnetoelectric response. Two candidate states have the same 12 particle topological order, the (Read-Moore) Pfaffian state with the neutral sector reversed, which we term T-Pfaffian topological order, but differ in their $mathcal T$ transformation. Although we are unable to connect either of these states directly to the superconducting TI surface, we argue that one of them describes the 3D TI surface, while the other differs from it by a bosonic topological phase. We also discuss the 24 particle Pfaffian-antisemion topological order (which can be connected to the superconducting TI surface) and demonstrate that it can be realized as a $mathcal T$ symmetric surface state.
The classification and construction of symmetry protected topological (SPT) phases have been intensively studied in interacting systems recently. To our surprise, in interacting fermion systems, there exists a new class of the so-called anomalous SPT (ASPT) states which are only well defined on the boundary of a trivial fermionic bulk system. We first demonstrate the essential idea by considering an anomalous topological superconductor with time reversal symmetry $T^2=1$ in 2D. The physical reason is that the fermion parity might be changed locally by certain symmetry action, but is conserved if we introduce a bulk. Then we discuss the layer structure and systematical construction of ASPT states in interacting fermion systems in 2D with a total symmetry $G_f=G_btimesmathbb{Z}_2^f$. Finally, potential experimental realizations of ASPT states are also addressed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا