ﻻ يوجد ملخص باللغة العربية
We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector beta, which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the beta frame and Landau frame and present an instance where they differ.
We study a relativistic fluid with longitudinal boost invariance in a quantum-statistical framework as an example of a solvable non-equilibrium problem. For the free quantum field, we calculate the exact form of the expectation values of the stress-e
We present a systematic calculation of the corrections of the stress-energy tensor and currents of the free boson and Dirac fields up to second order in thermal vorticity, which is relevant for relativistic hydrodynamics. These corrections are non-di
It is shown that different pairs of stress-energy and spin tensors of quantum relativistic fields related by a pseudo-gauge transformation, i.e. differing by a divergence, imply different mean values of physical quantities in thermodynamical nonequil
We present a new approach to the problem of the thermodynamical equilibrium of a quantum relativistic fluid in a curved spacetime in the limit of small curvature. We calculate the mean value of local operators by expanding the four-temperature Killin
We calculate the constitutive equations of the stress-energy tensor and the currents of the free massless Dirac field at thermodynamic equilibrium with acceleration and rotation and a conserved axial charge by using the density operator approach. We